Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-fidelity noiseless amplifier for quantum light states

Abstract

Noise is the price to pay when trying to clone or amplify arbitrary quantum states. However, the quantum noise associated with linear phase-insensitive amplifiers can be avoided by relaxing the requirement of a deterministic operation. Here we present the experimental realization of a novel concept of a probabilistic noiseless linear amplifier that is able to amplify coherent states at the highest levels of effective gain and final state fidelity ever reached. Based on a sequence of photon addition and subtraction, this high-fidelity amplification scheme is likely to become an essential tool for applications of quantum communication and metrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wigner function contours of input and amplified coherent states.
Figure 2: Experimental setup.
Figure 3: Amplifier performances.
Figure 4: Improved state discrimination.

Similar content being viewed by others

References

  1. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  2. Scarani, V., Iblisdir, S., Gisin, N. & Acín, A. Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  3. Gisin, N. Quantum cloning without signaling. Phys. Lett. A 242, 1–3 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. Bruss, D., D'Ariano, G. M., Macchiavello, C. & Sacchi, M. F. Approximate quantum cloning and the impossibility of superluminal information transfer. Phys. Rev. A 62, 062302 (2000).

    Article  ADS  Google Scholar 

  5. Ralph, T. C. & Lund, A. B. in Quantum Communication Measurement and Computing Proc. 9th Int. Conf. (ed. Lvovsky, A.) 155–160 (AIP, 2009).

  6. Pegg, D. T., Phillips, L. S. & Barnett, S. M. Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998).

    Article  ADS  Google Scholar 

  7. Babichev, S. A., Ries, J. & Lvovsky, A. I. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1–7 (2003).

    Article  ADS  Google Scholar 

  8. Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon. 4, 316–319 (2010).

    Article  Google Scholar 

  9. Ferreyrol, F. et al. Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010).

    Article  ADS  Google Scholar 

  10. Parigi, V., Zavatta, A., Kim, M. S. & Bellini, M. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007).

    Article  ADS  Google Scholar 

  11. Zavatta, A., Parigi, V., Kim, M. S., Jeong, H. & Bellini, M. Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. Phys. Rev. Lett. 103, 140406 (2009).

    Article  ADS  Google Scholar 

  12. Fiurasek, J. Engineering quantum operations on traveling light beams by multiple photon addition and subtraction. Phys. Rev. A 80, 053822 (2009).

    Article  ADS  Google Scholar 

  13. Marek, P. & Filip, R. Coherent-state phase concentration by quantum probabilistic amplification. Phys. Rev. A 81, 022302 (2010).

    Article  ADS  Google Scholar 

  14. Kim, M. S., Jeong, H., Zavatta, A., Parigi, V. & Bellini, M. Scheme for proving the bosonic commutation relation using single-photon interference. Phys. Rev. Lett. 101, 260401 (2008).

    Article  ADS  Google Scholar 

  15. Zavatta, A., Viciani, S. & Bellini, M. Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004).

    Article  ADS  Google Scholar 

  16. Zavatta, A., Viciani, S. & Bellini, M. Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820 (2005).

    Article  ADS  Google Scholar 

  17. Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556–S559 (2004).

    Article  ADS  Google Scholar 

  18. Hradil, Z., Mogilevtsev, D. & Rehacek, J. Biased tomography schemes: an objective approach. Phys. Rev. Lett. 96, 230401 (2006).

    Article  ADS  Google Scholar 

  19. Roch, J.-F., Poizat, J.-P. & Grangier, P. Sub-shot-noise manipulation of light using semiconductor emitters and receivers. Phys. Rev. Lett. 71, 2006–2009 (1993).

    Article  ADS  Google Scholar 

  20. Grosshans, F. et al. Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  21. Dowling, J. P. Correlated input-port, matter-wave interferometer: quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  22. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  23. Usuga, M. A. et al. Noise-powered probabilistic concentration of phase information. Nature Phys. 6, 767–771 (2010).

    Article  ADS  Google Scholar 

  24. Duan, L., Lukin, M., Cirac, J. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  25. Duan, L.-M. & Guo, G.-C. Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999–5002 (1998).

    Article  ADS  Google Scholar 

  26. Fiurášek, J. Optimal probabilistic cloning and purification of quantum states. Phys. Rev. A 70, 032308 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  27. Wittmann, C., Andersen, U. L., Takeoka, M., Sych, D. & Leuchs, G. Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. Phys. Rev. Lett. 104, 100505 (2010).

    Article  ADS  Google Scholar 

  28. Menzies, D. & Croke, S. Noiseless linear amplification via weak measurements. http://arXiv.org/abs/0903.4181 (2009).

Download references

Acknowledgements

A.Z. and M.B. acknowledge support from Ente Cassa di Risparmio di Firenze and Regione Toscana under project CTOTUS. J.F. acknowledges support from the Czech Ministry of Education under projects LC06007, MSM6198959213 and 7E08028, from the EU under the FET-Open project COMPAS (212008), and from the Czech Science Foundation under project GA202/08/0224.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. planned the experiment and carried out measurements and data analysis. J.F. planned the experiment and developed the theoretical models. M.B. proposed, planned and coordinated the experiment. All authors discussed the results and implications of the experiment and contributed to writing the manuscript.

Corresponding author

Correspondence to M. Bellini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavatta, A., Fiurášek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon 5, 52–56 (2011). https://doi.org/10.1038/nphoton.2010.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing