Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent terahertz control of antiferromagnetic spin waves

Abstract

Ultrafast charge and spin excitations in the elusive terahertz regime1,2 of the electromagnetic spectrum play a pivotal role in condensed matter3,4,5,6,7,8,9,10,11,12,13. The electric field of free-space terahertz pulses has provided a direct gateway to manipulating the motion of charges on the femtosecond timescale6,7,8,9. Here, we complement this process by showing that the magnetic component of intense terahertz transients enables ultrafast control of the spin degree of freedom. Single-cycle terahertz pulses switch on and off coherent spin waves in antiferromagnetic NiO at frequencies as high as 1 THz. An optical probe pulse with a duration of 8 fs follows the terahertz-induced magnetic dynamics directly in the time domain and verifies that the terahertz field addresses spins selectively by means of the Zeeman interaction. This concept provides a universal ultrafast means to control previously inaccessible magnetic excitations in the electronic ground state.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The experiment.
Figure 2: Femtosecond terahertz spin resonance.
Figure 3: Coherent terahertz control of spin waves.

References

  1. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    ADS  Article  Google Scholar 

  2. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007) and references therein.

    ADS  Article  Google Scholar 

  3. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

    ADS  Article  Google Scholar 

  4. Kaindl, R. A., Carnahan, M. A., Hägele, D., Lövenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas. Nature 423, 734–738 (2003).

    ADS  Article  Google Scholar 

  5. Kröll, J. et al. Phase-resolved measurements of stimulated emission in a laser. Nature 449, 698–701 (2007).

    ADS  Article  Google Scholar 

  6. Cole, B. E., Williams, J. B., King, B. T., Sherwin, M. S. & Stanley, C. R. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–63 (2001).

    ADS  Article  Google Scholar 

  7. Carter, S. G. et al. Quantum coherence in an optical modulator. Science 310, 651–653 (2005).

    ADS  Article  Google Scholar 

  8. Danielson, J. R. et al. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Phys. Rev. Lett. 99, 237401 (2007).

    ADS  Article  Google Scholar 

  9. Leinß, S. et al. Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett. 101, 246401 (2008).

    ADS  Article  Google Scholar 

  10. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    ADS  Article  Google Scholar 

  11. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    ADS  Article  Google Scholar 

  12. Pimenov, A. et al. Magnetic and magnetoelectric excitations in TbMnO3 . Phys. Rev. Lett. 102, 107203 (2009).

    ADS  Article  Google Scholar 

  13. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85 . Science 288, 1234–1237 (2000).

    ADS  Article  Google Scholar 

  14. Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in a small permalloy disc by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134–1137 (1997).

    ADS  Article  Google Scholar 

  15. Back, C. H. et al. Minimum field strength in precessional magnetization reversal. Science 285, 864–867 (1999).

    Article  Google Scholar 

  16. Wang, Z., Pietz, M., Walowski, J., Förster, A., Lepsa, M. I. & Münzenberg, M. Spin dynamics triggered by sub-terahertz magnetic field pulses. J. Appl. Phys. 103, 123905 (2008).

    ADS  Article  Google Scholar 

  17. Kimel, A. V. et al. Ultrafast non-thermal control of magnetisation by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    ADS  Article  Google Scholar 

  18. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

    ADS  Article  Google Scholar 

  19. Duong, N. P., Satoh, T. & Fiebig, M. Ultrafast manipulation of antiferromagnetism of NiO. Phys. Rev. Lett. 93, 117402 (2004).

    ADS  Article  Google Scholar 

  20. Beaurepaire, E. et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl. Phys. Lett. 84, 3465–3467 (2004).

    ADS  Article  Google Scholar 

  21. Hilton, D. J. et al. Terahertz emission via ultrashort-pulse excitation of magnetic metal films. Opt. Lett. 29, 1805–1807 (2004).

    ADS  Article  Google Scholar 

  22. Blanchard, F. et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 15, 13212–13220 (2007).

    ADS  Article  Google Scholar 

  23. Yeh, K.-L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 µJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).

    ADS  Article  Google Scholar 

  24. Hellwege, K. H. & Madelung, O. (eds) Landolt–Börnstein: Numerical Data and Functional Relationships, New Series, Group III, Vol. 17g (Springer-Verlag, 1984) and references therein.

  25. Sänger, I., Pavlov, V. V., Bayer, M. & Fiebig, M. Distribution of antiferromagnetic spin and twin domains in NiO. Phys. Rev. B 74, 144401 (2006).

    ADS  Article  Google Scholar 

  26. Hutchings, M. T. & Samuelson, E. J. Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B 6, 3447–3461 (1972).

    ADS  Article  Google Scholar 

  27. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    ADS  Article  Google Scholar 

  28. Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer-Verlag, 2006) and references therein.

  29. Takahashi, S. et al. Coherent manipulation and decoherence of S=10 single-molecule magnets. Phys. Rev. Lett. 102, 087603 (2009).

    ADS  Article  Google Scholar 

  30. Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Kuipers and U. Novak for helpful discussions. Support from the German Research Foundation (DFG) via Emmy Noether grant HU1598/1-1 and SFB767 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

T.K., A.S., R.H. and A.L. designed the experiment. Measurements were performed by T.K., A.S., R.H. and A.P. A.S., T.K. and R.H. analysed and modelled the data. M.F. prepared the sample, which was characterized by G.K., S.M. and T.D. T.K., R.H., A.S., A.L., M.W. and M.F. co-wrote the paper. All authors contributed to discussions.

Corresponding authors

Correspondence to Tobias Kampfrath or Rupert Huber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kampfrath, T., Sell, A., Klatt, G. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon 5, 31–34 (2011). https://doi.org/10.1038/nphoton.2010.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.259

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing