Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-energy isolated attosecond pulses generated by above-saturation few-cycle fields

Abstract

The applications of isolated attosecond pulses reported to date, which have demonstrated the great potential of attosecond technology in the investigation of ultrafast electronic processes, have been limited by the low photon flux of the available attosecond sources. We report on the generation of isolated sub-160-as pulses (at a photon energy of 30 eV) with a pulse energy, on target, of a few nanojoules. The efficient generation of isolated attosecond pulses in noble gases is produced by 5-fs driving pulses with controlled electric field and peak intensity beyond the gas saturation intensity. The availability of attosecond sources with high peak intensities has potential in opening new avenues for attosecond-pump/attosecond-probe studies of electronic processes in atomic and molecular physics, with interesting prospects in the field of coherent control of electronic motion in complex systems in the attosecond temporal regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CEP-dependence of measured XUV spectra.
Figure 2: FROG CRAB measurement of isolated attosecond pulses.
Figure 3: Quantum path contributions to the XUV emission rate by saddle-point simulations.
Figure 4: Calculated spectral and temporal characteristics of XUV radiation.
Figure 5: Spatiotemporal characteristics of attosecond pulses.

Similar content being viewed by others

References

  1. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  3. Nisoli, M. & Sansone, S. New frontiers in attosecond science. Prog. Quantum Electron. 33, 17–59 (2009).

    Article  ADS  Google Scholar 

  4. Christov, I. P., Murnane, M. M. & Kapteyn, H. High-harmonic generation of attosecond pulses in the ‘single-cycle’ regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article  ADS  Google Scholar 

  5. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  6. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  7. Tcherbakoff, O., Mével, E., Descamps, D., Plumridge, J. & Constant, E. Time-gated high-order harmonic generation. Phys. Rev. A 68, 043804 (2003).

    Article  ADS  Google Scholar 

  8. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    Article  ADS  Google Scholar 

  9. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    Article  ADS  Google Scholar 

  10. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  11. Abel, M. J. et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

    Article  Google Scholar 

  12. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    Article  ADS  Google Scholar 

  13. Gilbertson, S., Khan, S. D., Wu, Y., Chini, M. & Chang, Z. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers. Phys. Rev. Lett. 105, 093902 (2010).

    Article  ADS  Google Scholar 

  14. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  15. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    Article  ADS  Google Scholar 

  16. Midorikawa, K., Nabekawa, Y. & Suda, A. XUV multiphoton processes with intense high-order harmonics. Prog. Quantum Electron. 32, 43–88 (2008).

    Article  ADS  Google Scholar 

  17. Remetter, T. et al. Attosecond electron wave packet interferometry. Nature Phys. 2, 323–326 (2006).

    Article  ADS  Google Scholar 

  18. Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    Article  ADS  Google Scholar 

  19. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401(R) (2005).

    Article  ADS  Google Scholar 

  20. Delong, K. W., Fittinghoff, D. N. & Trebino, R. Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating. IEEE J. Quantum Electron. 32, 1253–1264 (1996).

    Article  ADS  Google Scholar 

  21. Thomann, I. et al. Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses. Opt. Express 17, 4611–4633 (2009).

    Article  ADS  Google Scholar 

  22. Cao, W. et al. Single-attosecond pulse generation with an intense multicycle driving pulses. Phys. Rev. A 74, 063821 (2006).

    Article  ADS  Google Scholar 

  23. Kim, K. T., Kim, C. M., Baik, M. G., Umesh, G. & Nam, C. H. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805(R) (2004).

    Article  ADS  Google Scholar 

  24. Lewenstein, M., Balcou, Ph., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser pulses. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  25. Sansone, G., Vozzi, C., Stagira, S. & Nisoli, M. Nonadiabatic quantum path analysis of high-order harmonic generation: role of the carrier-envelope phase on short and long paths. Phys. Rev. A. 70, 013411 (2004).

    Article  ADS  Google Scholar 

  26. Bellini, M. et al. Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett. 81, 297–300 (1998).

    Article  ADS  Google Scholar 

  27. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Zh. Eksp. Teor. Fiz. 91, 2008 (1986). [Sov. Phys. JETP 64, 1191 (1986)].

    Google Scholar 

  28. Sansone, G. et al. Control of long electron quantum paths in high-order harmonic generation by phase-stabilized light pulses. Phys. Rev. A 73, 053408 (2006).

    Article  ADS  Google Scholar 

  29. Priori, E. et al. Nonadiabatic three-dimensional model of high-order harmonic generation in the few-optical-cycle regime. Phys. Rev. A 61, 63801 (2000).

    Article  ADS  Google Scholar 

  30. López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    Article  ADS  Google Scholar 

  31. Mashiko, H., Suda, A. & Midorikawa, K. Focusing multiple high-order harmonics in the extreme-ultraviolet and soft-X-ray regions by a platinum-coated ellipsoidal mirror. Appl. Opt. 45, 573–577 (2006).

    Article  ADS  Google Scholar 

  32. Remacle, F. & Levine, R. D. An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to the results presented in this paper was supported by funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 227355 – ELYCHE. The authors acknowledge financial support from the Italian Ministry of Research (FIRB-IDEAS RBID08CRXK), support from European Union under contract no. 228334 JRA-ALADIN (Laserlab Europe II) and from MC-RTN ATTOFEL (FP7-238362).

Author information

Authors and Affiliations

Authors

Contributions

F.F., F.C. and M.L. contributed equally to this work and performed the experiments. F.C. performed the three-dimensional simulations, M.L. performed the saddle-point simulations and F.F. and M.L. performed the FROG CRAB simulations. C.V. and S.S. contributed to the development of the experimental setup. G.S. was responsible for the construction of the attosecond cross-correlation setup. M.N. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to M. Nisoli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, F., Calegari, F., Lucchini, M. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon 4, 875–879 (2010). https://doi.org/10.1038/nphoton.2010.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing