Abstract
With intensities 108–1010 times greater than other laboratory sources, X-ray free-electron lasers are currently opening up new frontiers across many areas of science. In this Review we describe how these unconventional lasers work, discuss the range of new sources being developed worldwide, and consider how such X-ray sources may develop over the coming years.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kulipanov, G. N. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers. Phys. Usp. 50, 368–376 (2007).
Motz, H. Applications of the radiation from fast electron beams. J. Appl. Phys. 22, 527–535 (1951).
Motz, H., Thon, W. & Whitehurst, R. N. Experiments on radiation by fast electron beams. J. Appl. Phys. 24, 826–833 (1953).
Phillips, R. M. History of the ubitron. Nucl. Inst. Method. Phys. Res. A 272, 1–9 (1988).
Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).
Elias, L. R., Fairbank, W. M., Madey J. M. J., Schwettman, H. A. & Smith, T. I. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field. Phys. Rev. Lett. 36, 717–720 (1976).
Deacon, D. A. G. et al. First operation of a free electron laser. Phys. Rev. Lett. 38, 892–894 (1977).
Colson, W. B. One-body electron dynamics in a free electron laser. Phys. Lett. 64A, 190–192 (1977).
Hopf, F. A., Meystre, P., Scully, M. O. & Louisell, W. H. Classical theory of a free electron laser. Phys. Rev. Lett. 37, 1215–1218 (1976).
Kroll, N. M. & McMullin, W. A. Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A 17, 300–308 (1978).
Bernstein, I. B. & Hirshfield, J. L. Amplification on a relativistic electron beam in a spatially periodic transverse magnetic field. Phys. Rev. A 20, 1661–1670 (1979).
Sprangle, P. & Smith, R. A. Theory of free electron lasers. Phys. Rev. A 21, 293–301 (1980).
Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980).
Colson, W. B. The nonlinear wave equation for higher harmonics in free-electron lasers. IEEE J. Quant. Electron. QE-17, 1417–1427 (1981).
Kroll, N., Morton, P. & Rosenbluth, M. Free-electron lasers with variable parameter wigglers. IEEE J. Quant. Electron. QE-17, 1436–1468 (1981).
Bonifacio, R., Casagrande, F. & Casati, G. Cooperative and chaotic transition of a free electron laser Hamiltonian model. Opt. Commun. 40, 219–223 (1982).
Bonifacio, R., Pellegrini, C. & Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Optics Commun. 50, 373–378 (1984).
Pierce, J. R. Traveling Wave Tubes (Van Nostrand, 1950).
Murphy, J. B. & Pellegrini, C. in Laser Handbook Vol. 6 (eds Colson, W. B. et al.) 9–69 (North-Holland, 1990).
Bonifacio, R. et al. Physics of the high-gain free electron laser and superradiance. Riv. Nuovo Cimento 13, 1–69 (1990).
Saldin, E. L., Schneidmiller, E. A., Yurkov, M. V. The physics of free electron lasers (Springer, 2000).
Bratman, V. L., Ginzburg, N. S. & Petelin, M. I. Common properties of free-electron lasers. Opt. Commun. 30, 409–412 (1979).
Bonifacio, R. & de Salvo, L. Collective atomic recoil laser (CARL): Optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms. Nucl. Inst. Meth. Phys. Res. A 341, 360–362 (1994).
Robb, G. R. M. Collective instabilities in light–matter interactions. Proc. Les Houches Summer School session XC (eds Dauxois, T. et al.) 527–544 (Oxford Univ. Press, 2010).
Robb, G. R. M. & McNeil, B. W. J. Superfluorescent Rayleigh scattering from suspensions of dielectric particles. Phys. Rev. Lett. 90, 123903 (2003).
Robb, G. R. M., McNeil, B. W. J., Galbraith, I. & Jaroszynski, D. A. Collective free-carrier scattering in semiconductors. Phys. Rev. B 63, 165208 (2001).
Acebrón, J. A. et al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).
Clarke, J. A. The science and technology of undulators and wigglers (Oxford University Press, 2004).
Bonifacio, R., de Salvo Souza, L., Pierini, P. & Scharlemann, E. T. Generation of XUV light by resonant-frequency tripling in a 2-wiggler FEL amplifier. Nucl. Inst. Meth. Phys. Res. A 296, 787–790 (1990).
Yu, L. H. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178–5193 (1991).
Doyuran, A. et al. Characterization of a high-gain harmonic-generation free-electron laser at saturation. Phys. Rev. Lett. 86, 5902–5905 (2001).
Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Study of a noise degradation of amplification process in a multistage HGHG FEL. Opt. Commun. 202, 169–187 (2002).
Dunning, D. J. et al. Optimisation of an HHG-seeded harmonic cascade FEL design for the NLS project. Proc. 1st Int. Particle Accelerator Conf. TUPE049, 2254–2256 (2010).
Kim, K.-J. Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871–1874 (1986).
Siegman, A. E. Lasers (University Science Books, 1986).
Bonifacio, R., de Salvo, L., Pierini, P., Piovella, N. & Pellegrini, C. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 73, 70–73 (1994).
Bonifacio, R., McNeil, B. W. J. & Pierini, P. Superradiance in the high-gain free-electron laser. Phys. Rev. A 40, 4467–4475 (1989).
http://fel09.dl.ac.uk/documents/Lectures/tutorial/Emma-SUPA-Tutorial-Lecture.ppt.
Humphries, S. Jr Charged Particle Beams Ch. 3, 79–132 (Wiley, 1990).
Kim, K.-J. Brightness, coherence and propagation characteristics of synchrotron radiation. Nucl. Inst. Meth. Phys. Res. A 246 71–76 (1986).
Scharlemann, E. T. Wiggle plane focusing in linear wigglers. J. Appl. Phys. 58, 2154–2161 (1985).
Faatz, B. & Pflüger, J. Different focusing solutions for the TTF-FEL undulator. Nucl. Inst. Meth. Phys. Res. A 475 603–607 (2001).
Scharlemann, E. T. in High gain, high power FEL (eds Bonifacio, R. et al.) 95 (Elsevier, 1989).
Bonifacio, R., de Salvo Souza, L. & McNeil, B. W. J. Emittance limitations in the free electron laser. Opt. Commun. 93, 179–185 (1992).
Scharlemann, E. T., Sessler, A. M. & Wurtele, J. S. Optical guiding in a free-electron laser. Phys. Rev. Lett. 54, 1925–1928 (1985).
Li, Y., Faatz, B. & Pflueger, J. Undulator system tolerance analysis for the European X-ray free-electron laser. Phys. Rev. Spec. Top. AB 11, 100701 (2008).
Nuhn, H.-D. LCLS undulator commissioning, alignment and performance. Proc. 31st Int. Free Electron Laser Conf. THOA02, 714–721 (2009).
Huang, Z., Kim, K.-J. Review of X-ray free-electron laser theory. Phys. Rev. Spec. Top. AB 10, 034801 (2007).
Robinson, I. et al. Focus on X-ray beams with high coherence. New J. Phys. 12, 035002 (2010).
Colson W. B. et al. Free electron lasers in 2009. Proc. 31st Int. Free Electron Laser Conf. WEPC43, 591–595 (2009).
Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).
Altarelli, M. et al. (eds). XFEL: The European X-ray free-electron laser technical design report. DESY 2006-097 (DESY, 2007).
Shintake, T. et al. Status report on Japanese XFEL construction project at SPring-8. Proc. 1st Int. Particle Accelerator Conf. TUXRA02, 1285–1289 (2010).
Faatz, B. et al. FLASH II: A seeded future at FLASH. Proc. 1st Int. Particle Accelerator Conf. TUPE005, 2152–2154 (2010).
Shintake, T. et al. A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photon. 2, 555–559 (2008).
Patterson, B. D. et al. Coherent science at the Swiss FEL X-ray laser. New J. Phys. 12, 035012 (2010).
Penco, G. The FERMI@ETETTRA commissioning. Proc. 1st Int. Particle Accelerator Conf. TUOARA02, 1293–1295 (2010).
McNeil, B. W. J. et al. An XUV-FEL amplifier seeded using high harmonic generation. New J. Phys. 9, 82 (2007).
G. Lambert . et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nature Phys. 4, 296–300 (2008).
Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).
McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).
Ding, Y., Huang, Z. & Ruth, R. D. Two-bunch self-seeding for narrow-bandwidth hard X-ray free-electron lasers. Phys. Rev. Spec. Top. AB 13, 060703 (2010).
Reiche, S., Musumeci, P., Pellegrini, C. & Rosenzweig, J. B. Development of ultra-short pulse, single coherent spike for SASE X-ray FELs. Nucl. Inst. Meth. Phys. Res. A 593, 45–48 (2008).
Gover, A. & Dyunin, E. Collective-interaction control and reduction of optical frequency shot noise in charged-particle beams. Phys. Rev. Lett. 102, 154801 (2009).
Litvinenko, V. N. Suppressing shot noise and spontaneous radiation in electron beams. Proc. 31st Int. Free Electron Laser Conf. TUOB05, 229–234 (2009).
McNeil, B. W. J., Robb, G. R. M., Poole, M. W. & Thompson, N. R. Harmonic lasing in a free-electron-laser amplifier. Phys. Rev. Lett. 96, 084801 (2006).
McNeil, B. W. J., Robb, G. R. M. & Poole, M. W. Two-beam free-electron laser. Phys. Rev. E 70, 035501(R) (2004).
Thompson, N. R., Dunning, D. J. & McNeil, B. W. J. Improved temporal coherence in SASE FELs. Proc. 1st Int. Particle Accelerator Conf. TUPE050, 2257–2259 (2010).
Stupakov, G. Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009).
Xiang, D. et al. Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys. Rev. Lett. 115, 114801 (2010).
Xiang, D., Huang, Z., Ratner, D. & Stupakov, G. Feasibility study for a seeded hard X-ray source based on a two-stage echo-enabled harmonic generation FEL. Proc. 31st Int. Free Electron Laser Conf. MOPC79, 192–195 (2009).
Feng, C. & Zhao, Z. T. Coherent hard X-ray free-electron laser based on echo enabled staged harmonic generation scheme. Proc. 1st Int. Particle Accelerator Conf. TUPD092, 2120–2122 (2010).
Colella, R. & Luccio, A. Proposal for a free electron laser in the X-ray region. Opt. Commun. 50, 41–44 (1984).
Kim, K.-J., Shvyd'ko, Y. & Reiche, S. An X-ray free-electron laser oscillator with an energy recovery linac. Phys. Rev. Lett. 100, 244802 (2008).
Kim, K.-J. & Shvyd'ko, Y. Tunable optical cavity for an X-ray free-electron-laser oscillator. Phys. Rev. Spec. Top. AB 12, 030703 (2009).
Shvyd'ko, Y. V. et al. High-reflectivity high-resolution X-ray crystal optics with diamonds. Nature Phys. 6, 196–199 (2010).
McNeil, B. W. J. A simple model of the free-electron-laser oscillator from low into high gain. IEEE J. Quant. Electron. 26, 1124–1129 (1990).
Nguyen, D. C. et al. First lasing of the regenerative amplifier FEL. Nucl. Inst. Meth. Phys. Res. A 429, 125–130 (1999).
Faatz, B. et al. Regenerative FEL amplifier at the TESLA test facility at DESY. Nucl. Inst. Meth. Phys. Res. A 429, 424–428 (1999).
Huang, Z. & Ruth, R. Fully coherent X-ray pulses from a regenerative-amplifier free-electron laser. Phys. Rev. Lett. 96, 144801 (2006).
McNeil, B. W. J. et al. A design for the generation of temporally-coherent radiation pulses in the VUV and beyond by a self-seeding high-gain free electron laser amplifier. New J. Phys. 9, 239 (2007).
Dunning, D. J., McNeil, B. W. J. & Thompson, N. R. Short wavelength regenerative amplifier free electron lasers. Nucl. Inst. Meth. Phys. Res. A 593, 116–119 (2008).
Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
Xiang, D., Huang, Z. & Stupakov, G. Generation of intense attosecond X-ray pulses using ultraviolet laser induced microbunching in electron beams. Phys. Rev. Spec. Top. AB 12, 060701 (2009).
Ding, Y. et al. Generation of attosecond X-ray pulses with a multicycle two-color enhanced self-amplified spontaneous emission scheme. Phys. Rev. Spec. Top. AB 12, 060703 (2009).
Penn, G. & Zholents, A. Synchronized attosecond pulses for X-ray spectroscopy. Proc. 31st Int. Free Electron Laser Conf. MOPC73, 176–179 (2009).
Ding, Y. et al. Measurements and simulations of ultralow emittance and ultrashort electron beams in the Linac Coherent Light Source. Phys. Rev. Lett. 102, 254801 (2009).
Thompson, N. R. & McNeil, B. W. J. Mode locking in a free-electron laser amplifier. Phys. Rev. Lett. 100, 203901 (2008).
Rossbach, J., Saldin, E. L., Schneidmiller, E. A. & Yurkov. M. V. Fundamental limitations of an X-ray FEL operation due to quantum fluctuations of undulator radiation. Nucl. Inst. Meth. Phys. Res. A 393, 152–156 (1997).
Xiang, D. Laser assisted emittance exchange: Downsizing the X-ray free electron laser. Phys. Rev. Spec. Top. AB 13, 010701 (2010).
Bonifacio, R., Piovella, N., Robb, G. R. M. & Schiavi, A. Quantum regime of free electron lasers starting from noise. Phys. Rev. Spec. Top. AB 9, 090701 (2006).
Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nature Phys. 4, 447–453 (2008).
Grüner, F. et al. Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl. Phys. B 86, 431–435 (2007).
Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys. 4, 130–133 (2007).
Esarey, E., Shadwick, B. A., Catravas, P. & Leemans W. P. Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505 (2002).
Thomas, A. G. R. & Krushelnick, K. Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields. Phys. Plasmas 16, 103103 (2009).
Rousse, A. et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser–plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).
Phuoc, K. T. et al. Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97, 225002 (2006).
Dorchies, F. et al. Observation of subpicosecond X-ray emission from laser–cluster interaction. Phys. Rev. Lett. 100, 205002 (2008).
Kneip, S. et al. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006 (2008).
Schreiber, S. et al. FEL user facility FLASH. Proc. 1st Int. Particle Accelerator Conf. TUPE004, 2149–2151 (2010).
Kim E.-S. & Yoon M. Beam dynamics in a 10-GeV linear accelerator for the X-Ray free electron laser at PAL. IEEE T. Nucl. Sci. 56, 3597–3606 (2009).
https://slacportal.slac.stanford.edu/sites/lcls_public/lcls_ii/Pages/default.aspx.
Palumbo, L. The SPARX FEL project. Proc. 1st Int. Particle Accelerator Conf. TUPE022, 2185–2187 (2010).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
McNeil, B., Thompson, N. X-ray free-electron lasers. Nature Photon 4, 814–821 (2010). https://doi.org/10.1038/nphoton.2010.239
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.239
This article is cited by
-
Chaotic dynamics in X-ray free-electron lasers with an optical undulator
Scientific Reports (2024)
-
Attosecond-Angstrom free-electron-laser towards the cold beam limit
Nature Communications (2023)
-
Picosecond to microsecond dynamics of X-ray irradiated materials at MHz pulse repetition rate
Scientific Reports (2023)
-
Laser-accelerated electron beams at 1 GeV using optically-induced shock injection
Scientific Reports (2023)
-
Comparative Theoretical Analysis of Harmonic Generation in Free-Electron Lasers with Different Electron Beam Parameters
Russian Physics Journal (2023)