Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast high-resolution spectroscopy of dynamic continuous-wave laser sources

Abstract

Time-resolved, high-accuracy and high-resolution spectroscopy of rapidly tuned continuous-wave lasers is critical to realizing their full potential for sensing, but is not possible with conventional spectrometers. We demonstrate a coherent dual-comb-based spectrometer capable of measuring continuous-wave optical waveforms at time resolutions of 30 µs and 320 µs over terahertz bandwidths. Within each time interval, the spectrometer returns the laser frequency spectrum with kilohertz absolute accuracy and time-bandwidth limited precision. Unlike etalon-based techniques, each measurement is independently calibrated, which allows for discontinuous source tuning between measurements and the characterization of arbitrary continuous-wave waveforms. To demonstrate the broad applicability of the technique, we measure a laser during a nonlinear scan over 28 nm, a laser step-scanned over a 42-nm span containing several molecular absorption lines, a mechanically perturbed laser, and two lasers tuned simultaneously. Our approach should enable optimized waveforms for sensing applications including multispecies gas detection1,2,3, coherent laser radar4,5,6 and optical metrology7,8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent dual-comb spectrometer for metrology of arbitrary c.w. waveforms.
Figure 2: Measurement and processing.
Figure 3: Time-resolved measurements of the c.w. waveform from a tuned laser (ECDL) nonlinearly swept over 28 nm.
Figure 5: Spectroscopy of broadly tuned lasers.
Figure 4: Absorption lines of C2H2, CO and CO2 measured with a frequency-hopped laser from 1,530 to 1,572 nm.

Similar content being viewed by others

References

  1. Phelan, R., Lynch, M., Donegan, J. F. & Weldon, V. Simultaneous multispecies gas sensing by use of a sampled grating distributed Bragg reflector and modulated grating Y laser diode. Appl. Opt. 44, 5824–5831 (2005).

    Article  ADS  Google Scholar 

  2. Boylan, K., Weldon, V., McDonald, D., O'Gorman, J. & Hegarty, J. Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 µm. IEE Proc. Optoelectron. 148, 19–24 (2001).

    Article  Google Scholar 

  3. Cousin, J. et al. Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared. Appl. Phys. B 83, 261–266 (2006).

    Article  ADS  Google Scholar 

  4. Beck, S. M. et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing. Appl. Opt. 44, 7621–7629 (2005).

    Article  ADS  Google Scholar 

  5. Barber, Z. W., Babbitt, W. R., Kaylor, B., Reibel, R. R. & Roos, P. A. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar. Appl. Opt. 49, 213–219 (2010).

    Article  ADS  Google Scholar 

  6. Zheng, J. Analysis of optical frequency-modulated continuous-wave interference. Appl. Opt. 43, 4189–4198 (2004).

    Article  ADS  Google Scholar 

  7. Derickson, D. Fiber Optic Test and Measurement (Prentice Hall PTR, 1998).

    Google Scholar 

  8. Baney, D., Szafraniec, B. & Motamedi, A. Coherent optical spectrum analyzer. IEEE Photon. Tech. Lett. 14, 355–357 (2002).

    Article  ADS  Google Scholar 

  9. Domingo, J., Pelayo, J., Villuendas, F., Heras, C. & Pellejer, E. Very high resolution optical spectrometry by stimulated Brillouin scattering. IEEE Photon. Tech. Lett. 17, 855–857 (2005).

    Article  ADS  Google Scholar 

  10. Jayaraman, V., Chuang, Z.-M. & Coldren, L. Theory, design and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE J. Quantum Electron. 29, 1824–1834 (1993).

    Article  ADS  Google Scholar 

  11. Wesstrom, J.-O. et al. State-of-the-art performance of widely tunable modulated grating Y-branch lasers, in Optical Fiber Communication Conference, Los Angeles, CA, TeE2 (Optical Society of America, 2004).

  12. Liu, A. Q. & Zhang, X. M. A review of MEMS external-cavity tunable lasers. J. Micromech. Microeng. 17, R1–R13 (2007).

    Article  Google Scholar 

  13. Park, S. E. et al. Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb. Opt. Lett. 31, 3594–3596 (2006).

    Article  ADS  Google Scholar 

  14. Schibli, T. R. et al. Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb. Opt. Lett. 30, 2323–2325 (2005).

    Article  ADS  Google Scholar 

  15. Jost, J., Hall, J. & Ye, J. Continuously tunable, precise, single frequency optical signal generator. Opt. Express 10, 515–520 (2002).

    Article  ADS  Google Scholar 

  16. Inaba, H. et al. Doppler-free spectroscopy using a continuous-wave optical frequency synthesizer. Appl. Opt. 45, 4910–4915 (2006).

    Article  ADS  Google Scholar 

  17. Kim, Y.-J., Jin, J., Kim, Y., Hyun, S. & Kim, S.-W. A wide-range optical frequency generator based on the frequency comb of a femtosecond laser. Opt. Express 16, 258–264 (2008).

    Article  ADS  Google Scholar 

  18. Del'Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

  19. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  20. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  21. Coddington, I. et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter. Nature Photon. 1, 283–287 (2007).

    Article  ADS  Google Scholar 

  22. Ma, L., Zucco, M., Picard, S., Robertsson, L. & Windeler, R. A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements. IEEE J. Sel. Top. Quantum. Electron. 9, 1066–1071 (2003).

    Article  ADS  Google Scholar 

  23. Peng, J.-L., Liu, T.-A. & Shu, R.-H. Optical frequency counter based on two mode-locked fiber laser combs. Appl. Phys. B 92, 513–518 (2008).

    Article  ADS  Google Scholar 

  24. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  25. Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

    Article  ADS  Google Scholar 

  26. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  27. Giaccari, P., Deschenes, J. D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct rf beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).

    Article  ADS  Google Scholar 

  28. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2009).

    Article  ADS  Google Scholar 

  29. Coddington, I., Swann, W. C. & Newbury, N. R. Time-domain spectroscopy of molecular free-induction decay in the infrared. Opt. Lett. 35, 1395–1397 (2010).

    Article  ADS  Google Scholar 

  30. Newbury, N. R., Coddington, I. & Swann, W. C. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institute of Standards and Technology (NIST). F.R.G. received support from the Swiss National Science Foundation (SNF) under grant no. PBNEP2-127797. The authors acknowledge helpful discussions with Z. Barber, A. Dienstfry, T. Fortier and F. Quinlan.

Author information

Authors and Affiliations

Authors

Contributions

The concept was developed by N.R.N., I.C., E.B. and F.R.G. Experimental design and execution were performed by F.R.G., I.C., E.B. and N.R.N. The cavity-stabilized c.w. light was supplied by W.C.S. Analysis was performed by F.R.G. and N.R.N. All authors contributed to the manuscript preparation.

Corresponding authors

Correspondence to F. R. Giorgetta or N. R. Newbury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgetta, F., Coddington, I., Baumann, E. et al. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nature Photon 4, 853–857 (2010). https://doi.org/10.1038/nphoton.2010.228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing