Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Robustness of bipartite Gaussian entangled beams propagating in lossy channels

Subjects

Abstract

Subtle quantum properties offer exciting new prospects in optical communications. For example, quantum entanglement enables the secure exchange of cryptographic keys1 and the distribution of quantum information by teleportation2,3. Entangled bright beams of light are increasingly appealing for such tasks, because they enable the use of well-established classical communications techniques4. However, quantum resources are fragile and are subject to decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of entanglement5,6,7,8, limiting the application of these states to quantum-communication protocols. We investigate the conditions under which this phenomenon takes place for the simplest case of two light beams, and analyse characteristics of states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be harnessed for future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pictorial view of the process.
Figure 2: Space of states.
Figure 3: Entanglement data.

Similar content being viewed by others

References

  1. Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2008).

    Article  ADS  Google Scholar 

  2. Furusawa A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  3. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  4. Ralph, T. C. & Lam, P. K. A bright future for quantum communications. Nature Photon. 3, 671–673 (2009).

    Article  ADS  Google Scholar 

  5. Yu, T. & Eberly, J. H. Sudden death of entanglement. Science 323, 598–601 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  6. Almeida, M. P. et al. Environment-induced sudden death of entanglement. Science 316, 579–582 (2007).

    Article  ADS  Google Scholar 

  7. Yu, T. & Eberly, J. H. Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006).

    Article  ADS  Google Scholar 

  8. Coelho, A. S. et al. Three-color entanglement, Science 326, 823–826 (2009).

    Article  ADS  Google Scholar 

  9. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  Google Scholar 

  10. Schrödinger, E. Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935).

    Article  ADS  Google Scholar 

  11. Bachor, H. A. & Ralph, T. C. A Guide to Experiments in Quantum Optics 2nd edn (Wiley-VCH, 2004).

  12. Reid, M. D. & Drummond, P. D. Quantum correlations of phase in nondegenerate parametric oscillation. Phys. Rev. Lett. 60, 2731–2733 (1988).

    Article  ADS  Google Scholar 

  13. Villar, A. S., Cruz, L. S., Cassemiro, K. N., Martinelli, M. & Nussenzveig, P. Generation of bright two-color continuous variable entanglement. Phys. Rev. Lett. 95, 243603 (2005).

    Article  ADS  Google Scholar 

  14. César, J. E. S. et al. Extra phase noise from thermal fluctuations in nonlinear optical crystals. Phys. Rev. A 79, 063816 (2009)

    Article  ADS  Google Scholar 

  15. Duan, L. M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).

    Article  ADS  Google Scholar 

  16. Bowen, W. P., Schnabel, R., Lam, P. K. & Ralph, T. C. Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003).

    Article  ADS  Google Scholar 

  17. Eisert, J., Scheel, S. & Plenio, M. B. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. Giedke, G. & Cirac, J. I. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002).

    Article  ADS  Google Scholar 

  19. Barbosa, F. A. S. et al. Early stage disentanglement in bipartite continuous-variable systems. Preprint at http://arXiv:1009.4255v1 (2010).

  20. Simon, R. Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000).

    Article  ADS  Google Scholar 

  21. Villar, A. S. et al. Entanglement in the above-threshold optical parametric oscillator. J. Opt. Soc. Am. B 24, 249–256 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). It was performed as part of the Brazilian National Institute of Science and Technology for Quantum Information. K.N.C. and A.S.V. acknowledge support from the Alexander von Humboldt Foundation. We thank D. Elser for assistance in an earlier stage of the experiment.

Author information

Authors and Affiliations

Authors

Contributions

F.A.S.B. and A.S.C. performed the experiments and participated in data analysis, discussions and writing the manuscript. A.J.F., K.N.C. and A.S.V. participated in data analysis, discussions and writing the manuscript. P.N. and M.M. were responsible for general planning and participated in data analysis, discussions and writing the manuscript.

Corresponding author

Correspondence to M. Martinelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, F., Coelho, A., de Faria, A. et al. Robustness of bipartite Gaussian entangled beams propagating in lossy channels. Nature Photon 4, 858–861 (2010). https://doi.org/10.1038/nphoton.2010.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.222

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing