Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion

Abstract

Transducing non-classical states of light from one wavelength to another is required for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical-fibre transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 µm to visible wavelengths would be integral to linear optical quantum computation because of near-infrared detection challenges. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce triggered single photons from a semiconductor quantum dot at 1.3 µm to 710 nm with 21% (75%) total detection (internal conversion) efficiency. We demonstrate that the upconverted signal maintains the quantum character of the original light, yielding a second-order intensity correlation, g(2)(τ), that shows that the optical field is composed of single photons with g(2)(0) = 0.165 < 0.5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental schematic for upconversion of photoluminescence from a quantum dot.
Figure 2: Photoluminescence spectrum of a quantum dot measured by upconversion.
Figure 3: Time-resolved photoluminescence of a single quantum dot.
Figure 4: Upconversion of single photons.

Similar content being viewed by others

References

  1. Boyd, G. D. & Kleinman, D. A. Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 39, 3597–3639 (1968).

    Article  ADS  Google Scholar 

  2. Fejer, M. M., Magel, G. A., Jundt, D. H. & Byer, R. L. Quasi-phase-matched second harmonic generation – tuning and tolerances. IEEE J. Quantum Electron 28, 2631–2654 (1992).

    Article  ADS  Google Scholar 

  3. Chanvillard, L. et al. Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions. Appl. Phys. Lett. 76, 1089–1091 (2000).

    Article  ADS  Google Scholar 

  4. Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Physica Scripta 2009, 014001 (2009).

    Article  Google Scholar 

  5. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    Article  ADS  Google Scholar 

  6. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  ADS  Google Scholar 

  7. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    Article  ADS  Google Scholar 

  8. Duan, L., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  9. Chanelìere, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  10. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    Article  ADS  Google Scholar 

  11. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photon. 3, 696–705 (2009).

    Article  ADS  Google Scholar 

  12. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  13. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  14. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  15. Huang, J. M. & Kumar, P. Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992).

    Article  ADS  Google Scholar 

  16. Kim, Y.-H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

    Article  ADS  Google Scholar 

  17. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    Article  ADS  Google Scholar 

  18. Ma, L., Slattery, O., Chang, T. & Tang, X. Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide. Opt. Express 17, 15799–15807 (2009).

    Article  ADS  Google Scholar 

  19. Vandevender, A. & Kwiat, P. High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004).

    Article  ADS  Google Scholar 

  20. Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    Article  ADS  Google Scholar 

  21. Albota, M. & Wong, F. Efficient single-photon counting at 1.55 µm by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004).

    Article  ADS  Google Scholar 

  22. Xu, H., Ma, L., Mink, A., Hershman, B. & Tang, X. 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. Opt. Express 15, 7247–7260 (2007).

    Article  ADS  Google Scholar 

  23. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  24. Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Article  ADS  Google Scholar 

  25. Strauf, S. et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

    Article  ADS  Google Scholar 

  26. Zinoni, C. et al. Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Appl. Phys. Lett. 88, 131102 (2006).

    Article  ADS  Google Scholar 

  27. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  28. Stintz, A., Liu, G. T., Li, H., Lester, L. F. & Malloy, K. J. Low-threshold current density 1.3-µm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure. IEEE Photon. Tech. Lett. 12, 591–593 (2000).

    Article  ADS  Google Scholar 

  29. Srinivasan, K., Painter, O., Stintz, A. & Krishna, S. Single quantum dot spectroscopy using a fiber taper waveguide near-field optic. Appl. Phys. Lett. 91, 091102 (2007).

    Article  ADS  Google Scholar 

  30. Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997).

    Article  ADS  Google Scholar 

  31. Davanço, M. & Srinivasan, K. Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides. Opt. Express 17, 10542–10563 (2009).

    Article  ADS  Google Scholar 

  32. Ma, L., Slattery, O. & Tang, X. Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector. Opt. Express 17, 14395–14404 (2009).

    Article  ADS  Google Scholar 

  33. Thew, R. T., Zbinden, H. & Gisin, N. Tunable upconversion photon detector. Appl. Phys. Lett. 93, 071104 (2008).

    Article  ADS  Google Scholar 

  34. Zhang, Q., Langrock, C., Fejer, M. M. & Yamamoto, Y. Waveguide-based single-pixel up-conversion infrared spectrometer. Opt. Express 16, 19557–19561 (2008).

    Article  ADS  Google Scholar 

  35. Ribordy, G. et al. Photon counting at telecom wavelengths with commerical InGaAs/InP avalance photodiodes: current performance. J. Mod. Opt. 51, 1381–1398 (2004).

    ADS  Google Scholar 

  36. Santori, C. et al. Submicrosecond correlations in photoluminescence from InAs quantum dots. Phys. Rev. B 69, 205324 (2004).

    Article  ADS  Google Scholar 

  37. Zinoni, C. et al. Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors. Appl. Phys. Lett. 91, 031106 (2007).

    Article  ADS  Google Scholar 

  38. Simon, C. et al. Quantum communication with quantum dot spins. Phys. Rev. B 75, 081302 (2007).

    Article  ADS  Google Scholar 

  39. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    Article  ADS  Google Scholar 

  40. Kuzucu, O., Wong, F. N. C., Kurimura, S. & Tovstonog, S. Time-resolved single-photon detection by femtosecond upconversion. Opt. Lett. 33, 2257–2259 (2008).

    Article  ADS  Google Scholar 

  41. Shah, J. Ultrafast luminescence spectroscopy using sum frequency generation. IEEE J. Quantum Electron 24, 276–288 (1988).

    Article  ADS  Google Scholar 

  42. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photon. 4, 33–36 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Stintz and S. Krishna of the University of New Mexico and O. Painter of the California Institute of Technology for assistance with sample preparation, and M. Davanço of NIST for development of the fibre taper fabrication setup.

Author information

Authors and Affiliations

Authors

Contributions

M.T.R. and K.S. built the low-temperature measurement setup. L.M., O.S. and X.T. built the upconversion detectors. K.S. fabricated the devices and M.T.R., L.M. and K.S. performed the measurements. M.T.R. and K.S. wrote the manuscript. All authors contributed to the design of the experiments, and K.S. and X.T. supervised the project.

Corresponding author

Correspondence to Kartik Srinivasan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakher, M., Ma, L., Slattery, O. et al. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nature Photon 4, 786–791 (2010). https://doi.org/10.1038/nphoton.2010.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing