Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Slow light on a chip via atomic quantum state control

Abstract

The ability to slow down the propagation of light touches both fundamental aspects of light–matter interactions and practical applications in photonic communication and computation1,2,3. Optical quantum interference can substantially reduce the speed of light while offering additional dramatic optical effects based on the ability to control electronic quantum states4,5. Recent efforts are increasingly being directed towards harnessing these effects in integrated photonic structures6,7. Here, we report the first demonstration of slow light and electromagnetically induced transparency in a self-contained, planar atomic spectroscopy chip. Using hot rubidium atoms in hollow-core waveguides, we demonstrate 44% optical transparency with a group index of 1,200, or more than sevenfold slower light than in photonic-crystal waveguides8. Optical pulse delays of 16 ns with a delay-bandwidth product of 0.8 are observed. This implementation of atomic quantum state control in integrated photonic structures will enable coherent photonics at ultralow power levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated atomic spectroscopy platform.
Figure 2: Electromagnetically induced transparency (EIT) on a chip.
Figure 3: Slow light on a chip.
Figure 4: Slow light propagation characteristics.

Similar content being viewed by others

References

  1. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  2. Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003).

    Article  ADS  Google Scholar 

  3. Van der Wal, C. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

    Article  ADS  Google Scholar 

  4. Lukin, M. D. Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    Article  ADS  Google Scholar 

  5. Schmidt, H. & Imamoǧlu, A. Giant Kerr nonlinearities using electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  Google Scholar 

  6. Londero, P., Venkataraman, V., Bhagwat, A. R., Slepkov, A. D. & Gaeta, A. L. Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber. Phys. Rev. Lett. 103, 043602 (2009).

    Article  ADS  Google Scholar 

  7. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    Article  ADS  Google Scholar 

  8. Notomi, M., Kuramochi, E. & Tanabe, T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008).

    Article  ADS  Google Scholar 

  9. Kasapi, A., Jain, M., Yin, G. Y. & Harris, S. E. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447–2450 (1995).

    Article  ADS  Google Scholar 

  10. Camacho, R. M., Pack, M. V. & Howell, J. C. Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor. Phys. Rev. Lett. 98, 153601 (2007).

    Article  ADS  Google Scholar 

  11. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  12. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  13. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  14. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  ADS  Google Scholar 

  15. Field, J. E., Hahn, K. H. & Harris, S. E. Observation of electromagnetically induced transparency in collisionally broadened lead vapor. Phys. Rev. Lett. 67, 3062–3065 (1991).

    Article  ADS  Google Scholar 

  16. Harris, S. E. Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033–1036 (1989).

    Article  ADS  Google Scholar 

  17. Harris, S. E. & Yamamoto, Y. Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998).

    Article  ADS  Google Scholar 

  18. Schmidt, H., Campman, K. L., Gossard, A. C. & Imamoǧlu, A. Tunneling induced transparency: Fano interference in intersubband transitions. Appl. Phys. Lett. 70, 3455–3457 (1997).

    Article  ADS  Google Scholar 

  19. Faist, J., Capasso, F., Sirtori, C., West, K. & Pfeiffer, L. Controlling the sign of quantum interference by tunneling from quantum wells. Nature 390, 589–591 (2005).

    Article  ADS  Google Scholar 

  20. Turukhin, A. V. et al. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002).

    Article  ADS  Google Scholar 

  21. Ghosh, S., Sharping, J. E., Ouzounov, D. G. & Gaeta, A. L. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

    Article  ADS  Google Scholar 

  22. Light, P. S., Benabid, F., Couny, F., Maric, M. & Luiten, A. N. Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber. Opt. Lett. 32, 1323–1325 (2007).

    Article  ADS  Google Scholar 

  23. Ghosh, S. et al. Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    Article  ADS  Google Scholar 

  24. Yin, D., Barber, J., Hawkins, A. R., Deamer, D. W. & Schmidt, H. Integrated optical waveguides with liquid cores. Appl. Phys. Lett. 85, 3477–3479 (2004).

    Article  ADS  Google Scholar 

  25. Yang, W. et al. Atomic spectroscopy on a chip. Nature Photon. 1, 331–335 (2007).

    Article  ADS  Google Scholar 

  26. Vanier, J. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B 81, 421–442 (2005).

    Article  ADS  Google Scholar 

  27. Slepkov, A. D., Bhagwat, A. R., Venkataraman, V., Londero, P. & Gaeta, A. L. Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers. Opt. Express 16, 18976–18983 (2008).

    Article  ADS  Google Scholar 

  28. Li, Y. & Xiao, M. Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms. Phys. Rev. A 51, 2703–2706 (1994).

    Article  ADS  Google Scholar 

  29. Schmidt, H. & Hawkins, A. R. Electromagnetically induced transparency in alkali atoms integrated on a semiconductor chip. Appl. Phys. Lett. 86, 032106 (2005).

    Article  ADS  Google Scholar 

  30. Lunt, E. J. et al. Hollow ARROW waveguides on self-aligned pedestals for improved geometry and transmission. IEEE Photon. Technol. Lett. 22, 1147–1149 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Gaeta, S.E. Harris, J. Lowell, S. Knappe and J. Kitching for helpful discussions. We acknowledge support through the nanocharacterization lab in the W.M. Keck Center for Nanoscale Optofluidics at University of California Santa Cruz and financial support by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office Slow-Light Program (Air Force Office of Scientific Research contract #FA9550-05-1-0432) and the National Science Foundation under grants ECS-0500602 and ECS-0500670.

Author information

Authors and Affiliations

Authors

Contributions

B.W., J.F.H., A.R.H. and H.S. conceived and designed the experiments. J.F.H., K.H. and E.J.L. fabricated the atomic spectroscopy chips. B.W. performed the atomic spectroscopy experiments. B.W. and H.S. analysed the spectroscopy data, and H.S., A.R.H., B.W. and J.F.H. prepared the manuscript.

Corresponding author

Correspondence to Holger Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Hulbert, J., Lunt, E. et al. Slow light on a chip via atomic quantum state control. Nature Photon 4, 776–779 (2010). https://doi.org/10.1038/nphoton.2010.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing