Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Optical arbitrary waveform generation

Abstract

Optical arbitrary waveform generation will allow waveforms to be synthesized at optical frequencies but with the flexibility currently available at radiofrequencies. This technique is enabled by combining frequency comb technology, which produces trains of optical pulses with a well-defined frequency spectrum, with pulse shaping methods, which are used to transform a train of ultrashort pulses into an arbitrary waveform. To produce a waveform that fills time, the resolution of the shaper must match the repetition rate of the original pulse train, which in turn must have a comb spectrum that is locked to the shaper. Here, we review the current efforts towards achieving optical arbitrary waveform generation and discuss the possible applications of this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical arbitrary waveform generation.
Figure 2: Interplay between spectral resolution and temporal response.
Figure 3: Offset frequency sensitivity in line-by-line pulse shaping.
Figure 4: Frequency combs spread in two dimensions using a VIPA and diffraction grating.
Figure 5: Static OAWG waveforms.

Similar content being viewed by others

References

  1. Ye, J. & Cundiff, S. T. Femtosecond optical frequency comb technology (Springer, 2005).

    Google Scholar 

  2. Cundiff, S. T. & Ye, J. Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  3. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  4. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instr. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  5. Jiang, Z., Seo, D. S., Leaird, D. E. & Weiner, A. M. Spectral line by line pulse shaping. Opt. Lett. 30, 1557–1559 (2005).

    Article  ADS  Google Scholar 

  6. Fontaine, N. K. et al. 32 phase x 32 amplitude optical arbitrary waveform generation. Opt. Lett. 32, 865–867 (2007).

    Article  ADS  Google Scholar 

  7. Jiang, Z., Huang, C. B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

    Article  ADS  Google Scholar 

  8. Ippen, E. P. Principles of passive-mode locking. Appl. Phys. B 58, 159–170 (1994).

    Article  ADS  Google Scholar 

  9. Weiner, A. M. Ultrafast optics (Wiley, 2009).

    Book  Google Scholar 

  10. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  11. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  12. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  13. Cundiff, S. T., Ye, J. & Hall, J. L. Optical frequency synthesis based on mode-locked lasers. Rev. Sci. Instr. 72, 3749–3771 (2001).

    Article  ADS  Google Scholar 

  14. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  15. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Optical properties of high-delta air-silica microstructure optical fibers. Opt. Lett. 25, 796–798 (2000).

    Article  ADS  Google Scholar 

  16. Bartels, A., Heinecke, D. & Diddams, S. A. 10-GHz self-referenced optical frequency comb. Science 326, 681–681 (2009).

    Article  ADS  Google Scholar 

  17. Fortier, T. M., Bartels, A. & Diddams, S. A. Octave-spanning Ti:Sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons. Opt. Lett. 31, 1011–1013 (2006).

    Article  ADS  Google Scholar 

  18. Fortier, T. M., Jones, D. J. & Cundiff, S. T. Phase stabilization of an octave-spanning Ti:Sapphire laser. Opt. Lett. 28, 2198–2200 (2003).

    Article  ADS  Google Scholar 

  19. Matos, L. et al. Direct frequency comb generation from an octave-spanning, prismless Ti:Sapphire laser. Opt. Lett. 29, 1683–1685 (2004).

    Article  ADS  Google Scholar 

  20. Quinlan, F., Willliams, C., Ozharar, S., Gee, S. & Delfyett, P. J. Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator. J. Lightwave Technol. 26, 2571–2577 (2008).

    Article  ADS  Google Scholar 

  21. Nakazawa, M., Kasai, K. & Yoshida, M. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition rate stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 μm. Opt. Lett. 33, 2641–2643 (2008).

    Article  ADS  Google Scholar 

  22. Kobayash, T., Sueta, T., Matsuo, Y. & Cho, Y. High repetition rate optical pulse-generator using a Fabry–Perót electrooptic modulator. Appl. Phys. Lett. 21, 341–343 (1972).

    Article  ADS  Google Scholar 

  23. Yamamoto, T., Komukai, T., Suzuki, K. & Takada, A. Multicarrier light source with flattened spectrum using phase modulators and dispersion medium. J. Lightwave Technol. 27, 4297–4305 (2009).

    Article  ADS  Google Scholar 

  24. Kourogi, M., Nakagawa, K. & Ohtsu, M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quant. Electron. 29, 2693–2701 (1993).

    Article  ADS  Google Scholar 

  25. Ye, J., Ma, L. S., Daly, T. & Hall, J. L. Highly selective terahertz optical frequency comb generator. Opt. Lett. 22, 301–303 (1997).

    Article  ADS  Google Scholar 

  26. Weiner, A. M., Heritage, J. P. & Kirschner, E. M. High-resolution femtosecond pulse shaping. J. Opt. Soc. Am. B 5, 1563–1572 (1988).

    Article  ADS  Google Scholar 

  27. Weiner, A. M., Leaird, D. E., Patel, J. S. & Wullert, J. R. Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator. IEEE J. Quant. Electron. 28, 908–920 (1992).

    Article  ADS  Google Scholar 

  28. Wefers, M. M. & Nelson, K. A. Generation of high-fidelity programmable ultrafast optical waveforms. Opt. Lett. 20, 1047–1049 (1995).

    Article  ADS  Google Scholar 

  29. Dugan, M. A., Tull, J. X. & Warren, W. S. High resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses. J. Opt. Soc. Am. B 14, 2348–2358 (1997).

    Article  ADS  Google Scholar 

  30. Goswami, D. Optical pulse shaping approaches to coherent control. Phys. Rep. 374, 385–481 (2003).

    Article  ADS  Google Scholar 

  31. Nuernberger, P., Vogt, G., Brixner, T. & Gerber, G. Femtosecond quantum control of molecular dynamics in the condensed phase. Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).

    Article  Google Scholar 

  32. Willits, J. T., Weiner, A. M. & Cundiff, S. T. Theory of rapid-update line by line pulse shaping. Opt. Express 16, 315–327 (2008).

    Article  ADS  Google Scholar 

  33. Geisler, D. J. et al. Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation. Opt. Express 17, 15911–15925 (2009).

    Article  ADS  Google Scholar 

  34. Shirasaki, M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21, 366–368 (1996).

    Article  ADS  Google Scholar 

  35. Xiao, S. & Weiner, A. M. 2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band. Opt. Express 12, 2895–2902 (2004).

    Article  ADS  Google Scholar 

  36. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  37. Fontaine, N. K. et al. Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation. Opt. Lett. 33, 1714–1716 (2008).

    Article  ADS  Google Scholar 

  38. Miyamoto, D. et al. Waveform-controllable optical pulse generation using an optical pulse synthesizer. IEEE Photon. Tech. Lett. 18, 721–723 (2006).

    Article  ADS  Google Scholar 

  39. Takiguchi, K., Okamoto, K., Kominato, I., Takahashi, H. & Shibata, T. Flexible pulse waveform generation using silica waveguide based spectrum synthesis circuit. Electron. Lett. 40, 537–538 (2004).

    Article  Google Scholar 

  40. Heck, M. J. R. et al. Design, fabrication, and characterization of an InP-based tunable integrated optical pulse shaper. IEEE J. Quant. Electron. 44, 370–377 (2008).

    Article  ADS  Google Scholar 

  41. Baek, J. H. et al. 10-GHz and 20-GHz channel spacing high-resolution AWGs on InP. IEEE Photon. Tech. Lett. 21, 298–300 (2009).

    Article  ADS  Google Scholar 

  42. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    Article  ADS  Google Scholar 

  43. Lepetit, L., Cheriaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).

    Article  ADS  Google Scholar 

  44. Trebino, R. Frequency-resolved optical gating: The measurement of ultrafast laser pulses (Kluwer, 2000).

    Book  Google Scholar 

  45. Scott, R. P. et al. High-fidelity line by line optical waveform generation and complete characterization using FROG. Opt. Express 15, 9977–9988 (2007).

    Article  ADS  Google Scholar 

  46. Fontaine, N. K., Scott, R. P., Heritage, J. P. & Yoo, S. J. B. Near quantum-limited, single-shot coherent arbitrary optical waveform measurements. Opt. Express 17, 12332–12344 (2009).

    Article  ADS  Google Scholar 

  47. Miao, H. X., Leaird, D. E., Langrock, C., Fejer, M. M. & Weiner, A. M. Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry. Opt. Express 17, 3381–3389 (2009).

    Article  ADS  Google Scholar 

  48. Supradeepa, V. R., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform characterization via dual-quadrature spectral interferometry. Opt. Express 17, 25–33 (2009).

    Article  ADS  Google Scholar 

  49. Supradeepa, V. R., Leaird, D. E. & Weiner, A. M. Single shot amplitude and phase characterization of optical arbitrary waveforms. Opt. Express 17, 14434–14443 (2009).

    Article  ADS  Google Scholar 

  50. Bennett, C. V., Moran, B. D., Langrock, C., Fejer, M. M. & Ibsen, M. 640 GHz real-time recording using temporal imaging. Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf. paper CTuA6 (2008).

  51. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  52. Fontaine, N. K. et al. Real-time full-field arbitrary optical waveform measurement. Nature Photon. 4, 248–254 (2010).

    Article  ADS  Google Scholar 

  53. Ni, K. K. et al. A high phase space density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  54. Stowe, M. C., Cruz, F. C., Marian, A. & Ye, J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett. 96, 153001 (2006).

    Article  ADS  Google Scholar 

  55. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  Google Scholar 

  56. Lee, W., Izadpanah, H., Delfyett, P. J., Menendez, R. & Etemad, S. Coherent pulse detection and multi-channel coherent detection based on a single balanced homodyne receiver. Opt. Express 15, 2098–2105 (2007).

    Article  ADS  Google Scholar 

  57. Ellis, A. D. & Gunning, F. C. G. Spectral density enhancement using coherent WDM. IEEE Photon. Tech. Lett. 17, 504–506 (2005).

    Article  ADS  Google Scholar 

  58. Yamazaki, E., Inuzuka, F., Yonenaga, K., Takada, A. & Koga, M. Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system. IEEE Photon. Tech. Lett. 19, 9–11 (2007).

    Article  ADS  Google Scholar 

  59. Roos, P. A. et al. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett. 34, 3692–3694 (2009).

    Article  ADS  Google Scholar 

  60. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nature Photon. 3, 351–356 (2009).

    Article  ADS  Google Scholar 

  61. Gens, R. & VanGenderen, J. L. SAR interferometry — issues, techniques, applications. Int. J. Remote Sens. 17, 1803–1835 (1996).

    Article  ADS  Google Scholar 

  62. Supradeepa, V. R., Huang, C. B., Leaird, D. E. & Weiner, A. M. Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms. Opt. Express 16, 11878–11887 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.T.C. was supported by NIST. A.M.W. was supported in part by the Naval Postgraduate School under grant N00244-09-1-0068 through the National Security Science and Engineering Faculty Fellowship programme. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven T. Cundiff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cundiff, S., Weiner, A. Optical arbitrary waveform generation. Nature Photon 4, 760–766 (2010). https://doi.org/10.1038/nphoton.2010.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing