Graphene photonics and optoelectronics

Abstract

The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The optical properties of graphene.
Figure 2: Graphene as transparent conductor.
Figure 3: Graphene-based optoelectronics.
Figure 4: Graphene touch screen and smart window.
Figure 5: Graphene integration in fibre lasers.
Figure 6: Graphene mode-locked laser performance.

References

  1. 1

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  2. 2

    Charlier, J. C., Eklund, P. C., Zhu, J. & Ferrari, A. C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Top. Appl. Phys. 111, 673–709 (2008).

    Article  Google Scholar 

  3. 3

    Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    Article  ADS  MATH  Google Scholar 

  4. 4

    Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Du, X. I. et al. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  ADS  Google Scholar 

  6. 6

    Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electr. Device Lett. 28, 282–284 (2007).

    Article  ADS  Google Scholar 

  7. 7

    Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  ADS  Google Scholar 

  8. 8

    Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  ADS  Google Scholar 

  9. 9

    Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).

    Article  ADS  Google Scholar 

  10. 10

    Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  ADS  Google Scholar 

  11. 11

    Nair, R. R. et al. Fine structure constant defines transparency of graphene. Science 320, 1308–1308 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Hasan, T. et al. Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21, 3874–3899 (2009).

    Article  Google Scholar 

  13. 13

    Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  14. 14

    Stoehr, R. J., Kolesov, R., Pflaum, J. & Wrachtrup, J. Fluorescence of laser created electron–hole plasma in graphene. Preprint at http://arxiv.org/abs/1006.5434v1 (2010).

    Google Scholar 

  15. 15

    Liu, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Preprint at http://arxiv.org/abs/1006.5769v1 (2010).

    Google Scholar 

  16. 16

    Wu, S. et al. Nonlinear photoluminescence from graphene. Abstract number: BAPS.2010.MAR.Z22.11, APS March Meeting, Portland, Oregon (2010).

    Google Scholar 

  17. 17

    Hartschuh, A. et al. Excited state energies and decay dynamics in carbon nanotubes and graphene. E-MRS Spring Meeting (2010).

    Google Scholar 

  18. 18

    Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    Article  Google Scholar 

  19. 19

    Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2009).

    Article  Google Scholar 

  20. 20

    Sun, X. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008).

    Article  ADS  Google Scholar 

  21. 21

    Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T. & Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).

    Article  ADS  Google Scholar 

  22. 22

    Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    Article  ADS  Google Scholar 

  23. 23

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  24. 24

    Mak, K. F., Shan, J. & Heinz, T. F. Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2009).

    Article  ADS  Google Scholar 

  25. 25

    Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Article  ADS  Google Scholar 

  26. 26

    Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).

    Article  ADS  Google Scholar 

  27. 27

    Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Electronic transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).

    Article  ADS  Google Scholar 

  28. 28

    González, J., Guinea, F. & Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 77, 3589–3592 (1996).

    Article  ADS  Google Scholar 

  29. 29

    Lu, J. et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009).

    Article  Google Scholar 

  30. 30

    Sheats, J. R. et al. Organic electroluminescent devices. Science 273, 884–888 (1996).

    Article  ADS  Google Scholar 

  31. 31

    Rothberg, L. J. & Lovinger, A. J. Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 3174–3187 (1996).

    Article  ADS  Google Scholar 

  32. 32

    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  Google Scholar 

  33. 33

    Essig, S. et al. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano Lett. 10, 1589–1594 (2010).

    Article  ADS  Google Scholar 

  34. 34

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  35. 35

    Karu, A. E. & Beer, M. Pyrolytic formation of highly crystalline graphite films. J. Appl. Phys. 37, 2179–2181 (1966).

    Article  ADS  Google Scholar 

  36. 36

    Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V. & Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007).

    Article  Google Scholar 

  37. 37

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  ADS  Google Scholar 

  38. 38

    Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  ADS  Google Scholar 

  39. 39

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 4, 574–578 (2010).

    Article  ADS  Google Scholar 

  40. 40

    Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  Google Scholar 

  41. 41

    Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

    Article  ADS  Google Scholar 

  42. 42

    Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  ADS  Google Scholar 

  43. 43

    Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  ADS  Google Scholar 

  44. 44

    Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  ADS  Google Scholar 

  45. 45

    Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    Article  Google Scholar 

  46. 46

    Valles, C. et al. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008).

    Article  Google Scholar 

  47. 47

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  ADS  Google Scholar 

  48. 48

    Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).

    Article  ADS  Google Scholar 

  49. 49

    Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech. 3, 538–542 (2008).

    Article  ADS  Google Scholar 

  50. 50

    Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  Google Scholar 

  51. 51

    Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860).

    Google Scholar 

  52. 52

    Mattevi, C. et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009).

    Article  Google Scholar 

  53. 53

    Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  ADS  Google Scholar 

  54. 54

    Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  Google Scholar 

  55. 55

    Oshima, C. & Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Mat. 9, 1–20 (1997).

    Article  ADS  Google Scholar 

  56. 56

    Wang, J. et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42, 2867–2872 (2004).

    Article  Google Scholar 

  57. 57

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  58. 58

    Acheson, E. G. Production of artificial crystalline carbonaceous materials; article of carborundum and process of the manufacture thereof carborundum. US patent 615,648 (1896).

  59. 59

    Badami, D. V. Graphitization of α-silicon carbide. Nature 193, 569–570 (1962).

    Article  ADS  Google Scholar 

  60. 60

    Isett, L. C. & Blakely, J. M. Segregation isosteres for carbon at the (100) surface of nickel. Surf. Sci. 58, 397–414 (1976).

    Article  ADS  Google Scholar 

  61. 61

    Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M. & Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 374, 61–64 (1997).

    Article  ADS  Google Scholar 

  62. 62

    Rosei, R. et al. Structure of graphitic carbon on Ni(111): A surface extended-energy-loss fine-structure study. Phys. Rev. B 28, 1161–1164 (1983).

    Article  ADS  Google Scholar 

  63. 63

    Riedl, C. et al. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).

    Article  ADS  Google Scholar 

  64. 64

    Choucair, M., Thordarson, P. & Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech. 4, 30–33 (2009).

    Article  ADS  Google Scholar 

  65. 65

    Wang, X. et al. Transparent carbon films as electrodes in organic solar cells. Angew. Chem. 47, 2990–2992 (2008).

    Article  Google Scholar 

  66. 66

    Wu, J., Pisula, W. & Mullen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).

    Article  Google Scholar 

  67. 67

    Reina, A. et al. Transferring and identification of single-and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 112, 17741–17744 (2008).

    Article  Google Scholar 

  68. 68

    Vijayaraghavan, A. et al. Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. ACS Nano 3, 1729–1734 (2009).

    Article  MathSciNet  Google Scholar 

  69. 69

    Beecher, P. et al. Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 102, 043710 (2007).

    Article  ADS  Google Scholar 

  70. 70

    Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R160 (1986).

    Article  ADS  Google Scholar 

  71. 71

    Holland, L. & Siddall, G. The properties of some reactively sputtered metal oxide films. Vacuum 3, 375–391 (1953).

    Article  ADS  Google Scholar 

  72. 72

    Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005).

    Article  ADS  Google Scholar 

  73. 73

    Granqvist, C. G. Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).

    Article  Google Scholar 

  74. 74

    Sheraw, C. D. et al. Organic thin-film transistor-driven polymer dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 80, 1088–1090 (2002).

    Article  ADS  Google Scholar 

  75. 75

    Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

    Article  ADS  Google Scholar 

  76. 76

    De, S. et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).

    Article  Google Scholar 

  77. 77

    Geng, H. Z. et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129, 7758–7759 (2007).

    Article  Google Scholar 

  78. 78

    Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    Article  ADS  Google Scholar 

  79. 79

    De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).

    Article  Google Scholar 

  80. 80

    Casiraghi, C., Pisana, S., Novoselov, K. S., Geim, A. K. & Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

    Article  ADS  Google Scholar 

  81. 81

    Sahu, D. R., Lin, S. Y. & Huang, J. L. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci. 252, 7509–7514 (2006).

    Article  ADS  Google Scholar 

  82. 82

    Gilje, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    Article  ADS  Google Scholar 

  83. 83

    Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

    Article  ADS  Google Scholar 

  84. 84

    Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  Google Scholar 

  85. 85

    Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2009).

    Article  Google Scholar 

  86. 86

    Biswas, S. & Drzal, L. T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid–liquid interface. Nano Lett. 9, 167–172 (2008).

    Article  ADS  Google Scholar 

  87. 87

    Tung, V. C. et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009).

    Article  ADS  Google Scholar 

  88. 88

    Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  ADS  Google Scholar 

  89. 89

    Matyba, P. et al. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010).

    Article  Google Scholar 

  90. 90

    Liu, Z. et al. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2008).

    Article  Google Scholar 

  91. 91

    Chapin, D. M., Fuller, C. S. & Pearson, G. L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).

    Article  ADS  Google Scholar 

  92. 92

    Green, M. A., Emery, K., Bücher, K., King, D. L. & Igari, S. Solar cell efficiency tables. Prog. Photovolt. Res. Appl. 7, 321–326 (1999).

    Article  Google Scholar 

  93. 93

    Hoppe, H. & Sariciftci, N. S. Organic solar cells: an overview. MRS Bull. 19, 1924–1945 (2004).

    Google Scholar 

  94. 94

    Krebs, F. C. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761–768 (2009).

    Article  Google Scholar 

  95. 95

    O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  ADS  Google Scholar 

  96. 96

    Wu, J. et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008).

    Article  ADS  Google Scholar 

  97. 97

    De Arco, L. G. et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4, 2865–2873 (2010).

    Article  Google Scholar 

  98. 98

    Yong, V. & Tour, J. M. Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6, 313–318 (2009).

    Article  Google Scholar 

  99. 99

    Yang, N., Zhai, J., Wang, D., Chen, Y. & Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010).

    Article  Google Scholar 

  100. 100

    Hong, W., Xu, Y., Lu, G., Li, C. & Shi, G. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008).

    Article  Google Scholar 

  101. 101

    Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  Google Scholar 

  102. 102

    Pei, Q. & Heeger, A. J. Operating mechanism of light-emitting electrochemical cells. Nature Mater. 7, 167 (2008).

    Article  ADS  Google Scholar 

  103. 103

    Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics Ch. 18, 784–803 (Wiley, 2007).

    Google Scholar 

  104. 104

    Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).

    Article  ADS  Google Scholar 

  105. 105

    Wright, A. R., Cao, J. C. & Zhang, C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Phys. Rev. Lett. 103, 207401 (2009).

    Article  ADS  Google Scholar 

  106. 106

    Vasko, F. T. & Ryzhii, V. Photoconductivity of intrinsic graphene. Phys. Rev. B 77, 195433 (2008).

    Article  ADS  Google Scholar 

  107. 107

    Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  108. 108

    Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  ADS  Google Scholar 

  109. 109

    Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    ADS  Google Scholar 

  110. 110

    Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  111. 111

    Kang, Y. M. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photon. 3, 59–63 (2009).

    Article  ADS  Google Scholar 

  112. 112

    Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562 (2010).

    Article  ADS  Google Scholar 

  113. 113

    Pickering, J. A. Touch-sensitive screens: the technologies and their applications. Int. J. Man. Mach. Stud. 25, 249–269 (1986).

    Article  Google Scholar 

  114. 114

    Craighead, H. G., Cheng, J. & Hackwood, S. New display based on electrically induced index-matching in an inhomogeneous medium. Appl. Phys. Lett. 40, 22–24 (1982).

    Article  ADS  Google Scholar 

  115. 115

    Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  116. 116

    Wang, F. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotech. 3, 738–742 (2008).

    Article  ADS  Google Scholar 

  117. 117

    Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    Article  ADS  Google Scholar 

  118. 118

    Sun, Z. et al. Wideband tunable, graphene-mode locked, ultrafast laser. Preprint at http://arxiv.org/abs/1003.4714 (2010).

    Google Scholar 

  119. 119

    Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2010).

    Article  Google Scholar 

  120. 120

    Zhang, H., Bao, Q. L., Tang, D. Y., Zhao, L. M. & Loh, K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 95, 141103 (2009).

    Article  ADS  Google Scholar 

  121. 121

    Zhang, H., Tang, D. Y., Zhao, L. M., Bao, Q. L. & Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17, 17630–17635 (2009).

    Article  ADS  Google Scholar 

  122. 122

    Zhang, H. et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010).

    Article  ADS  Google Scholar 

  123. 123

    Song, Y. W., Jang, S. Y., Han, W. S. & Bae, M. K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 96, 051122 (2010).

    Article  ADS  Google Scholar 

  124. 124

    Tan, W. D. et al. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 96, 031106 (2010).

    Article  ADS  Google Scholar 

  125. 125

    Scardaci, V. et al. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20, 4040–4043 (2008).

    Article  Google Scholar 

  126. 126

    Sun, Z. et al. A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Appl. Phys. Lett. 95, 253102 (2009).

    Article  ADS  Google Scholar 

  127. 127

    Bass, M., Li, G. & Stryland, E. V. Handbook of Optics IV (McGraw-Hill, 2001).

    Google Scholar 

  128. 128

    Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).

    Article  Google Scholar 

  129. 129

    Tutt, L. W. & Kost, A. Optical limiting performance of C60 and C70 solutions. Nature 356, 225–226 (1992).

    Article  ADS  Google Scholar 

  130. 130

    Wang, J., Chen, Y. & Blau, W. J. Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19, 7425–7443 (2009).

    Article  Google Scholar 

  131. 131

    Xu, Y. et al. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).

    Article  Google Scholar 

  132. 132

    Mikhailov, S. A. Non-linear electromagnetic response of graphene. Europhys. Lett. 79, 27002 (2007).

    Article  ADS  Google Scholar 

  133. 133

    Dean, J. J. & van Driel, H. M. Second harmonic generation from graphene and graphitic films. Appl. Phys. Lett. 95, 261910 (2009).

    Article  ADS  Google Scholar 

  134. 134

    Hendry, E., Hale, P. J., Moger, J. J., Savchenko, A. K. & Mikhailov, S. A. Strong nonlinear optical response of graphene flakes measured by four-wave mixing. Preprint at http://arxiv.org/abs/0912.5321v1 (2009).

    Google Scholar 

  135. 135

    Zhang, X.-C. & Xu, J. Introduction to THz Wave Photonics (Springer, 2010).

    Google Scholar 

  136. 136

    Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7, 91–99 (2008).

    Article  ADS  Google Scholar 

  137. 137

    Sun, D. et al. Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference. Nano Lett. 10, 1293–1296 (2010).

    Article  ADS  Google Scholar 

  138. 138

    Otsuji, T. et al. Observation of amplified stimulated terahertz emission from optically pumped epitaxial graphene heterostructures. Preprint at http://arxiv.org/abs/1001.5075v1 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank S. A. Awan, D. M. Basko, E. Lidorikis, A. Hartschuh, J. Coleman, A. Dyadyusha, D. P. Chu, T. Etchermeyer, T. Kulmala, A. Lombardo, D. Popa, G. Privitera, F. Torrisi, O. Trushkevych, F. Wang, T. Seyller, B. H. Hong, K. S. Novoselov and A. K. Geim for discussions. We acknowledge funding from EPSRC grants EP/G042357/1 and EP/G030480/1, ERC grant NANOPOTS, a Royal Society Brian Mercer Award for Innovation, the Cambridge Integrated Knowledge Centre in Advanced Manufacturing Technology for Photonics and Electronics, and Cambridge Nokia Research Centre. F.B. acknowledges funding from a Newton International Fellowship and T.H. from King's College, Cambridge. A.C.F. is a Royal Society Wolfson Research Merit Award holder.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonaccorso, F., Sun, Z., Hasan, T. et al. Graphene photonics and optoelectronics. Nature Photon 4, 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing