Abstract
The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
Charlier, J. C., Eklund, P. C., Zhu, J. & Ferrari, A. C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Top. Appl. Phys. 111, 673–709 (2008).
Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
Du, X. I. et al. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).
Lemme, M. C., Echtermeyer, T. J., Baus, M. & Kurz, H. A graphene field-effect device. IEEE Electr. Device Lett. 28, 282–284 (2007).
Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).
Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007).
Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).
Nair, R. R. et al. Fine structure constant defines transparency of graphene. Science 320, 1308–1308 (2008).
Hasan, T. et al. Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21, 3874–3899 (2009).
Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).
Stoehr, R. J., Kolesov, R., Pflaum, J. & Wrachtrup, J. Fluorescence of laser created electron–hole plasma in graphene. Preprint at http://arxiv.org/abs/1006.5434v1 (2010).
Liu, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Preprint at http://arxiv.org/abs/1006.5769v1 (2010).
Wu, S. et al. Nonlinear photoluminescence from graphene. Abstract number: BAPS.2010.MAR.Z22.11, APS March Meeting, Portland, Oregon (2010).
Hartschuh, A. et al. Excited state energies and decay dynamics in carbon nanotubes and graphene. E-MRS Spring Meeting (2010).
Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).
Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2009).
Sun, X. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008).
Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T. & Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).
Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).
Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).
Mak, K. F., Shan, J. & Heinz, T. F. Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2009).
Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).
Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).
Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Electronic transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).
González, J., Guinea, F. & Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 77, 3589–3592 (1996).
Lu, J. et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009).
Sheats, J. R. et al. Organic electroluminescent devices. Science 273, 884–888 (1996).
Rothberg, L. J. & Lovinger, A. J. Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 3174–3187 (1996).
Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).
Essig, S. et al. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. Nano Lett. 10, 1589–1594 (2010).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Karu, A. E. & Beer, M. Pyrolytic formation of highly crystalline graphite films. J. Appl. Phys. 37, 2179–2181 (1966).
Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V. & Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007).
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).
Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 4, 574–578 (2010).
Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).
Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).
Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).
Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).
Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).
Valles, C. et al. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008).
Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).
Green, A. A. & Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009).
Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech. 3, 538–542 (2008).
Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860).
Mattevi, C. et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009).
Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).
Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).
Oshima, C. & Nagashima, A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Mat. 9, 1–20 (1997).
Wang, J. et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42, 2867–2872 (2004).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
Acheson, E. G. Production of artificial crystalline carbonaceous materials; article of carborundum and process of the manufacture thereof carborundum. US patent 615,648 (1896).
Badami, D. V. Graphitization of α-silicon carbide. Nature 193, 569–570 (1962).
Isett, L. C. & Blakely, J. M. Segregation isosteres for carbon at the (100) surface of nickel. Surf. Sci. 58, 397–414 (1976).
Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M. & Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 374, 61–64 (1997).
Rosei, R. et al. Structure of graphitic carbon on Ni(111): A surface extended-energy-loss fine-structure study. Phys. Rev. B 28, 1161–1164 (1983).
Riedl, C. et al. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009).
Choucair, M., Thordarson, P. & Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech. 4, 30–33 (2009).
Wang, X. et al. Transparent carbon films as electrodes in organic solar cells. Angew. Chem. 47, 2990–2992 (2008).
Wu, J., Pisula, W. & Mullen, K. Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007).
Reina, A. et al. Transferring and identification of single-and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 112, 17741–17744 (2008).
Vijayaraghavan, A. et al. Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. ACS Nano 3, 1729–1734 (2009).
Beecher, P. et al. Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 102, 043710 (2007).
Hamberg, I. & Granqvist, C. G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R160 (1986).
Holland, L. & Siddall, G. The properties of some reactively sputtered metal oxide films. Vacuum 3, 375–391 (1953).
Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005).
Granqvist, C. G. Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).
Sheraw, C. D. et al. Organic thin-film transistor-driven polymer dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 80, 1088–1090 (2002).
Lee, J. Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).
De, S. et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009).
Geng, H. Z. et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129, 7758–7759 (2007).
Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).
De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).
Casiraghi, C., Pisana, S., Novoselov, K. S., Geim, A. K. & Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).
Sahu, D. R., Lin, S. Y. & Huang, J. L. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci. 252, 7509–7514 (2006).
Gilje, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).
Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).
Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).
Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2009).
Biswas, S. & Drzal, L. T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid–liquid interface. Nano Lett. 9, 167–172 (2008).
Tung, V. C. et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009).
Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).
Matyba, P. et al. Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4, 637–642 (2010).
Liu, Z. et al. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2008).
Chapin, D. M., Fuller, C. S. & Pearson, G. L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).
Green, M. A., Emery, K., Bücher, K., King, D. L. & Igari, S. Solar cell efficiency tables. Prog. Photovolt. Res. Appl. 7, 321–326 (1999).
Hoppe, H. & Sariciftci, N. S. Organic solar cells: an overview. MRS Bull. 19, 1924–1945 (2004).
Krebs, F. C. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761–768 (2009).
O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
Wu, J. et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008).
De Arco, L. G. et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4, 2865–2873 (2010).
Yong, V. & Tour, J. M. Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6, 313–318 (2009).
Yang, N., Zhai, J., Wang, D., Chen, Y. & Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010).
Hong, W., Xu, Y., Lu, G., Li, C. & Shi, G. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008).
Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).
Pei, Q. & Heeger, A. J. Operating mechanism of light-emitting electrochemical cells. Nature Mater. 7, 167 (2008).
Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics Ch. 18, 784–803 (Wiley, 2007).
Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).
Wright, A. R., Cao, J. C. & Zhang, C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Phys. Rev. Lett. 103, 207401 (2009).
Vasko, F. T. & Ryzhii, V. Photoconductivity of intrinsic graphene. Phys. Rev. B 77, 195433 (2008).
Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).
Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).
Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).
Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).
Kang, Y. M. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photon. 3, 59–63 (2009).
Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562 (2010).
Pickering, J. A. Touch-sensitive screens: the technologies and their applications. Int. J. Man. Mach. Stud. 25, 249–269 (1986).
Craighead, H. G., Cheng, J. & Hackwood, S. New display based on electrically induced index-matching in an inhomogeneous medium. Appl. Phys. Lett. 40, 22–24 (1982).
Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).
Wang, F. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotech. 3, 738–742 (2008).
Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).
Sun, Z. et al. Wideband tunable, graphene-mode locked, ultrafast laser. Preprint at http://arxiv.org/abs/1003.4714 (2010).
Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2010).
Zhang, H., Bao, Q. L., Tang, D. Y., Zhao, L. M. & Loh, K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 95, 141103 (2009).
Zhang, H., Tang, D. Y., Zhao, L. M., Bao, Q. L. & Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17, 17630–17635 (2009).
Zhang, H. et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010).
Song, Y. W., Jang, S. Y., Han, W. S. & Bae, M. K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 96, 051122 (2010).
Tan, W. D. et al. Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 96, 031106 (2010).
Scardaci, V. et al. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20, 4040–4043 (2008).
Sun, Z. et al. A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Appl. Phys. Lett. 95, 253102 (2009).
Bass, M., Li, G. & Stryland, E. V. Handbook of Optics IV (McGraw-Hill, 2001).
Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).
Tutt, L. W. & Kost, A. Optical limiting performance of C60 and C70 solutions. Nature 356, 225–226 (1992).
Wang, J., Chen, Y. & Blau, W. J. Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19, 7425–7443 (2009).
Xu, Y. et al. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).
Mikhailov, S. A. Non-linear electromagnetic response of graphene. Europhys. Lett. 79, 27002 (2007).
Dean, J. J. & van Driel, H. M. Second harmonic generation from graphene and graphitic films. Appl. Phys. Lett. 95, 261910 (2009).
Hendry, E., Hale, P. J., Moger, J. J., Savchenko, A. K. & Mikhailov, S. A. Strong nonlinear optical response of graphene flakes measured by four-wave mixing. Preprint at http://arxiv.org/abs/0912.5321v1 (2009).
Zhang, X.-C. & Xu, J. Introduction to THz Wave Photonics (Springer, 2010).
Rana, F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7, 91–99 (2008).
Sun, D. et al. Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference. Nano Lett. 10, 1293–1296 (2010).
Otsuji, T. et al. Observation of amplified stimulated terahertz emission from optically pumped epitaxial graphene heterostructures. Preprint at http://arxiv.org/abs/1001.5075v1 (2010).
Acknowledgements
We thank S. A. Awan, D. M. Basko, E. Lidorikis, A. Hartschuh, J. Coleman, A. Dyadyusha, D. P. Chu, T. Etchermeyer, T. Kulmala, A. Lombardo, D. Popa, G. Privitera, F. Torrisi, O. Trushkevych, F. Wang, T. Seyller, B. H. Hong, K. S. Novoselov and A. K. Geim for discussions. We acknowledge funding from EPSRC grants EP/G042357/1 and EP/G030480/1, ERC grant NANOPOTS, a Royal Society Brian Mercer Award for Innovation, the Cambridge Integrated Knowledge Centre in Advanced Manufacturing Technology for Photonics and Electronics, and Cambridge Nokia Research Centre. F.B. acknowledges funding from a Newton International Fellowship and T.H. from King's College, Cambridge. A.C.F. is a Royal Society Wolfson Research Merit Award holder.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Bonaccorso, F., Sun, Z., Hasan, T. et al. Graphene photonics and optoelectronics. Nature Photon 4, 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.186
This article is cited by
-
Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process
Nature Communications (2024)
-
Tailoring graphene for electronics beyond silicon
Nature (2024)
-
Platinum Diselenide and Graphene-Based Refractive Index Sensor for Cancer Detection
Plasmonics (2024)
-
Graphene/Al2O3/Si Schottky diode with integrated waveguide on a silicon-on-insulator wafer
Indian Journal of Physics (2024)
-
Dynamic Tunable Liquid-Core Photonic Crystal Fiber Sensor Based on Graphene Plasmon
Plasmonics (2024)