Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted


The ability to directly modulate a nanocavity laser with ultralow power consumption is essential for the realization of a CMOS-integrated, on-chip photonic network, as several thousand lasers must be integrated onto a single chip. Here, we show high-speed direct modulation (3-dB modulation bandwidth of 5.5 GHz) of an ultracompact InP/InGaAsP buried heterostructure photonic-crystal laser at room temperature by optical pumping. The required energy for transmitting one bit is estimated to be 13 fJ. We also achieve a threshold input power of 1.5 µW, which is the lowest observed value for room-temperature continuous-wave operation of any type of laser. The maximum single-mode fibre output power of 0.44 µW is the highest output power, to our knowledge, for photonic-crystal nanocavity lasers under room-temperature continuous-wave operation. Implementing a buried heterostructure leads to excellent device performance, reducing the active region temperature and effectively confining the carriers inside the cavity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the photonic-crystal nanocavity laser.
Figure 2: Fabricated of the BH photonic-crystal nanocavity laser.
Figure 3: Calculated active region temperature.
Figure 4: Measurement results for the fabricated laser.
Figure 5: Lasing spectrum and temperature dependence of the lasing wavelength.
Figure 6: Direct modulation of the fabricated laser.


  1. Magen, N., Kolodny, A., Weiser, U. & Shamir, N. Interconnect-power dissipation in a microprocessor. Proc. 2004 Int. Workshop System Level Interconnect Prediction, Session Interconnect Anal. SoCs Microprocess., 7–13 (2004).

  2. Vlasov, Y., Green, W. M. J. & Xia, F. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nature Photon. 2, 242–246 (2008).

    Article  Google Scholar 

  3. Shacham, A., Bergman, K. & Carloni, L. P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57, 1246–1260 (2008).

    Article  MathSciNet  Google Scholar 

  4. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  5. Tadokoro, T. et al. Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 °C. IEEE Photon. Technol. Lett. 21, 1154–1156 (2009).

    Article  ADS  Google Scholar 

  6. Otsubo, K. et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Sel. Top. Quant. Electron. 15, 687–693 (2009).

    Article  ADS  Google Scholar 

  7. Chang, Y.-C. & Coldren, L. A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quant. Electron. 15, 1–12 (2009).

    Article  Google Scholar 

  8. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  9. Takahashi, Y. et al. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 15, 17206–17213 (2007).

    Article  ADS  Google Scholar 

  10. Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112 (2005).

    Article  ADS  Google Scholar 

  11. Shinya, A. et al. All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal. Opt. Express 16, 19382–19387 (2008).

    Article  ADS  Google Scholar 

  12. Nozaki, K. et al. All-optical switching with extremely-small control energy in InGaAsP-based photonic crystal nanocavity. 22nd Annual Meeting of the IEEE Photonics Society, MD3, Belek-Antalya, Turkey, 2009.

  13. Loncâr, M. et al. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

    Article  ADS  Google Scholar 

  14. Ryu, H. Y., Notomi, M., Kuramochi, E. & Segawa, T. Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser. Appl. Phys. Lett. 84, 1067–1069 (2004).

    Article  ADS  Google Scholar 

  15. Baba, T. et al. Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature. Appl. Phys. Lett. 85, 3989–3991 (2004).

    Article  ADS  Google Scholar 

  16. Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  17. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    Article  ADS  Google Scholar 

  18. Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H. Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

    Article  ADS  Google Scholar 

  19. Notomi, M., Kuramochi, E. & Tanabe, T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008).

    Article  ADS  Google Scholar 

  20. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006).

    Article  ADS  Google Scholar 

  21. Nozaki, K., Kita, S. & Baba, T. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express 15, 7506–7514 (2007).

    Article  ADS  Google Scholar 

  22. Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  ADS  Google Scholar 

  23. Shih, M. H. et al. Identification of modes and single mode operation of sapphire-bonded photonic crystal lasers under continuous-wave room temperature operation. Appl. Phys. Lett. 90, 121116 (2007).

    Article  ADS  Google Scholar 

  24. Bagheri, M. et al. Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers. IEEE Photon. Technol. Lett. 18, 1161–1163 (2006).

    Article  ADS  Google Scholar 

  25. Notomi, M. & Taniyama, H. On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning. Opt. Express 16, 18657–18666 (2008).

    Article  ADS  Google Scholar 

  26. Nomura, M., Iwamoto, S., Kumagai, N. & Arakawa, Y. Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys. Rev. B 75, 195313 (2007).

    Article  ADS  Google Scholar 

  27. Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E. & Tanabe, T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).

    Article  ADS  Google Scholar 

  28. Björk, G. & Yamamoto, Y. On the linewidth of microcavity lasers. Appl. Phys. Lett. 60, 304–306 (1992).

    Article  ADS  Google Scholar 

  29. Okumura, T. et al. Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits. Opt. Express 17, 12564–12570 (2009).

    Article  ADS  Google Scholar 

  30. Long, C. M. et al. Photonic crystal band edge diode light emitters. Proceedings of Indium Phosphide and Related Materials 2009 ThA2.3, 399–402 (2009).

    Article  Google Scholar 

Download references


The authors thank R. Urata, R. Takahashi and K. Kato for their technical support and discussions. We also thank T. Yamanaka and H. Saito for numerical simulation of the thermal relaxation and Y. Shouji for fabricating the device. Part of this work was supported by the National Institute of Information and Communications Technology (NICT).

Author information

Authors and Affiliations



S.M. and M.N. conceived the idea and supervised the project. A.S., T.K. and K.N. designed the devices. S.M., T.S., T.S. and Y.K. fabricated the devices. S.M. and A.S. performed the measurements. S.M. and M.N. wrote the manuscript.

Corresponding author

Correspondence to Shinji Matsuo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matsuo, S., Shinya, A., Kakitsuka, T. et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nature Photon 4, 648–654 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing