Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Recent progress in lasers on silicon

Abstract

Silicon lasers have long been a goal for semiconductor scientists, and a number of important breakthroughs in the past decade have focused attention on silicon as a photonic platform. Here we review the most recent progress in this field, including low-threshold silicon Raman lasers with racetrack ring resonator cavities, the first germanium-on-silicon lasers operating at room temperature, and hybrid silicon microring and microdisk lasers. The fundamentals of carrier transition physics in crystalline silicon are discussed briefly. The basics of several important approaches for creating lasers on silicon are explained, and the challenges and opportunities associated with these approaches are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy band diagrams and major carrier transition processes in InP and silicon crystals.
Figure 2: Low-threshold Si Raman racetrack ring laser.
Figure 3: Optically pumped Ge-on-Si laser demonstrating CW operation at room temperature.
Figure 4: Hybrid Si device platform and hybrid Si distributed feedback lasers.
Figure 5: Compact hybrid Si microring lasers.
Figure 6: Hybrid Si microdisk laser array.

Similar content being viewed by others

References

  1. Soref, R. A. & Lorenzo, J. P. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 mm. IEEE J. Quant. Electron. 22, 873–879 (1986).

    Article  ADS  Google Scholar 

  2. http://www.itrs.net/

  3. Pavesi, L. in Device Applications of Silicon Nanocrystals and Nanostructures (ed. Koshida, N.) Ch. 4 (Springer, 2009).

    Google Scholar 

  4. Bisi, O., Ossicini, S. & Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000).

    Article  ADS  Google Scholar 

  5. Gösele, U. & Lehmann, V. Light-emitting porous silicon. Mater. Chem. Phys. 40, 253–259 (1995).

    Article  Google Scholar 

  6. Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).

    Article  ADS  Google Scholar 

  7. Cullis, A. G. & Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353, 335–338 (1991).

    Article  ADS  Google Scholar 

  8. Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P. & Fauchet, P. M. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996).

    Article  ADS  Google Scholar 

  9. Wilson, W. L., Szajowski, P. F. & Brus, L. E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993).

    Article  ADS  Google Scholar 

  10. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    Article  ADS  Google Scholar 

  11. Minoru, F., Masato, Y., Yoshihiko, K., Shinji, H. & Keiichi, Y. 1. 54 mm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198–1200 (1997).

    Article  Google Scholar 

  12. Iacona, F. et al. Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and Er-doped nanoclusters. IEEE J. Sel. Top. Quant. Electron. 12, 1596–1606 (2006).

    Article  ADS  Google Scholar 

  13. Lu, Z. H., Lockwood, D. J. & Baribeau, J. M. Quantum confinement and light emission in SiO2/Si superlattices. Nature 378, 258–260 (1995).

    Article  ADS  Google Scholar 

  14. Cloutier, S. G., Kossyrev, P. A. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater. 4, 887–891 (2005).

    Article  ADS  Google Scholar 

  15. Nassiopoulos, A. G., Grigoropoulos, S. & Papadimitriou, D. Electroluminescent device based on silicon nanopillars. Appl. Phys. Lett. 69, 2267–2269 (1996).

    Article  ADS  Google Scholar 

  16. Malinin, A., Ovchinnikov, V., Novikov, S., Tuovinen, C. & Hovinen, A. Fabrication of a silicon based electroluminescent device. Materials Science and Engineering B 74, 32–35 (2000).

    Article  Google Scholar 

  17. Pavesi, L. Routes toward silicon-based lasers. Mater. Today 8, 18–25 (2005).

    Article  Google Scholar 

  18. Pavesi, L. Silicon-based light sources for silicon integrated circuits. Adv. Opt. Tech. 416926 (2008).

  19. Lee, K. K. et al. Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model. Appl. Phys. Lett. 77, 1617–1619 (2000).

    Article  ADS  Google Scholar 

  20. Jalali, B. Making silicon lase. Sci. Am. 58–65 (February 2007).

  21. Claps, R., Dimitropoulos, D., Han, Y. & Jalali, B. Observation of Raman emission in silicon waveguides at 1.54 μm. Opt. Express 10, 1305–1313 (2002).

    Article  ADS  Google Scholar 

  22. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  23. Jones, R. et al. Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005).

    Article  ADS  Google Scholar 

  24. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  25. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  ADS  Google Scholar 

  26. Kawanami, H. Heteroepitaxial technologies of III–V on Si. Sol. Energ. Mat. Sol. C. 66, 479–486 (2001).

    Article  Google Scholar 

  27. Xie, Y. H., Wang, K. L. & Kao, Y. C. An investigation on surface conditions for Si molecular beam epitaxial (MBE) growth. J. Vac. Sci. Tech. A 3, 1035–1039 (1985).

    Article  ADS  Google Scholar 

  28. Samonji, K. et al. Reduction of threading dislocation density in InP-on-Si heteroepitaxy with strained short-period superlattices. Appl. Phys. Lett. 69, 100–102 (1996).

    Article  ADS  Google Scholar 

  29. Masafumi, Y., Mitsuru, S. & Yoshio, I. Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained-layer superlattices. Appl. Phys. Lett. 54, 2568–2570 (1989).

    Article  Google Scholar 

  30. Nozawa, K. & Horikoshi, Y. Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy. Jpn. J. Appl. Phys. 30, L668–L671 (1991).

    Article  ADS  Google Scholar 

  31. Yamaichi, E., Ueda, T., Gao, Q., Yamagishi, C. & Akiyama, M. Method to obtain low-dislocation-density regions by patterning with SiO2 on GaAs/Si followed by annealing. Jpn. J. Appl. Phys. 33, L1442–L1444 (1994).

    Article  ADS  Google Scholar 

  32. Groenert, M. E. et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers. J. Appl. Phys. 93, 362–367 (2003).

    Article  ADS  Google Scholar 

  33. Groenert, M. E., Pitera, A. J., Ram, R. J. & Fitzgerald, E. A. Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers. J. Vac. Sci. Tech. B 21, 1064–1069 (2003).

    Article  Google Scholar 

  34. Cerutti, L., Rodriguez, J. B. & Tournie, E. GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55 um at room temperature. IEEE Photon. Tech. Lett. 22, 553–555 (2010).

    Article  ADS  Google Scholar 

  35. Kunert, B., Volz, K., Koch, J. & Stolz, W. Direct-band-gap Ga(NAsP)-material system pseudomorphically grown on GaP substrate. Appl. Phys. Lett. 88, 182108 (2006).

    Article  ADS  Google Scholar 

  36. Kunert, B., Zinnkann, S., Volz, K. & Stolz, W. Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (001) silicon substrate by MOVPE. J. Cryst. Growth 310, 4776–4779 (2008).

    Article  ADS  Google Scholar 

  37. Yin, T. et al. 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15, 13965–13971 (2007).

    Article  ADS  Google Scholar 

  38. Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photon. 3, 59–63 (2008).

    Article  ADS  Google Scholar 

  39. Morse, M. et al. Monolithic Ge/Si avalanche photodiodes. Proc. 6th IEEE Int. Conf. Group IV Photon. 25–27 (2009).

  40. Kuo, Y.-H. et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005).

    Article  ADS  Google Scholar 

  41. Roth, J. E. et al. Optical modulator on silicon employing germanium quantum wells. Opt. Express 15, 5851–5859 (2007).

    Article  ADS  Google Scholar 

  42. Liu, J. et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15, 11272–11277 (2007).

    Article  ADS  Google Scholar 

  43. Sun, X., Liu, J., Kimerling, L. C. & Michel, J. Room-temperature direct bandgap electroluminescence from Ge-on-Si light-emitting diodes. Opt. Lett. 34, 1198–1200 (2009).

    Article  ADS  Google Scholar 

  44. Cheng, S.-L. et al. Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate. Opt. Express 17, 10019–10024 (2009).

    Article  ADS  Google Scholar 

  45. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    Article  ADS  Google Scholar 

  46. Jambois, O. et al. Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions. J. Appl. Phys. 106, 063526 (2009).

    Article  ADS  Google Scholar 

  47. Jambois, O. et al. Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. Opt. Express 18, 2230–2235 (2010).

    Article  ADS  Google Scholar 

  48. Liang, D. & Bowers, J. E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate. J. Vac. Sci. Tech. B 26, 1560–1568 (2008).

    Article  Google Scholar 

  49. Pasquariello, D. & Hjort, K. Plasma-assisted InP-to-Si low temperature wafer bonding. IEEE J. Sel. Top. Quant. Electron. 8, 118–131 (2002).

    Article  ADS  Google Scholar 

  50. Park, H., Fang, A. W., Kodama, S. & Bowers, J. E. Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells. Opt. Express 13, 9460–9464 (2005).

    Article  ADS  Google Scholar 

  51. Roelkens, G., Van Thourhout, D., Baets, R., Notzel, R. & Smit, M. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt. Express 14, 8154–8159 (2006).

    Article  ADS  Google Scholar 

  52. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  53. Fang, A. W. et al. Integrated AlGaInAs-silicon evanescent race track laser and photodetector. Opt. Express 15, 2315–2322 (2007).

    Article  ADS  Google Scholar 

  54. Fang, A. W. et al. A distributed Bragg reflector silicon evanescent laser. IEEE Photon. Tech. Lett. 20, 1667–1669 (2008).

    Article  ADS  Google Scholar 

  55. Fang, A. W., Lively, E., Kuo, Y.-H., Liang, D. & Bowers, J. E. A distributed feedback silicon evanescent laser. Opt. Express 16, 4413–4419 (2008).

    Article  ADS  Google Scholar 

  56. Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

    Article  ADS  Google Scholar 

  57. Liang, D. et al. Hybrid silicon (λ=1.5 mm) microring lasers and integrated photodetectors. Opt. Express 17, 20355–20364 (2009).

    Article  ADS  Google Scholar 

  58. Liang, D. et al. High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits. Electrochem. Solid. Lett. 12, H101–H104 (2009).

    Article  ADS  Google Scholar 

  59. Spuesens, T. et al. Improved design of an InP-based microdisk laser heterogeneously integrated with SOI. Proc. 6th IEEE Int. Conf. Group IV Photon. 202–204 (2009).

  60. Van Campenhout, J. et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Tech. Lett. 20, 1345–1347 (2008).

    Article  ADS  Google Scholar 

  61. Sysak, M. N. et al. Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser. Opt. Express 15, 15041–15046 (2007).

    Article  ADS  Google Scholar 

  62. Fedeli, J. M. et al. Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer. Adv. Opt. Tech. 412518 (2008).

  63. Chang, H.-H. et al. Integrated triplexer on hybrid silicon platform. Optical Fiber Communication Conf. paper OThC4 (2010).

  64. Sysak, M. N., Anthes, J. O., Bowers, J. E., Raday, O. & Jones, R. Integration of hybrid silicon lasers and electroabsorption modulators. Opt. Express 16, 12478–12486 (2008).

    Article  ADS  Google Scholar 

  65. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

  66. Soref, R. Toward silicon-based longwave integrated optoelectronics (LIO). Proc. SPIE 6898, 689809 (2008).

    Article  Google Scholar 

  67. Claps, R. et al. Raman amplification and lasing in SiGe waveguides. Opt. Express 13, 2459–2466 (2005).

    Article  ADS  Google Scholar 

  68. Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).

    Article  ADS  Google Scholar 

  69. Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon. 4, 182–187 (2010).

    Article  ADS  Google Scholar 

  70. Raz, O. et al. Compact, low power and low threshold electrically pumped micro disc lasers for 20Gb/s non return to zero all optical wavelength conversion. Optical Fiber Communication Conf. paper OMQ5 (2010).

Download references

Acknowledgements

The authors thank Scott Rodgers, Ron Esman, Mike Haney and Jag Shah of DARPA/MTO, the Kavli Foundation, Intel and Hewlett Packard for funding this research. Many others contributed to the hybrid silicon research described here, including Hanan Bar, Dan Blumenthal, Hsu-Hao Chang, Hui-Wen Chen, Alexander Fang, Hyundai Park, Martijn Heck, Richard Jones, Brian Koch, Mario Paniccia, Omri Raday and Matthew Sysak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Liang.

Ethics declarations

Competing interests

Di Liang is now employed by Hewlett Packard investigating hybrid silicon photonic integrated circuits. John Bowers is also involved in developing hybrid silicon photonic integrated circuits at Aurrion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, D., Bowers, J. Recent progress in lasers on silicon. Nature Photon 4, 511–517 (2010). https://doi.org/10.1038/nphoton.2010.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing