Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases

Abstract

Terahertz wave sensing and imaging have received a great deal of attention because of their significant scientific and technological potential in multidisciplinary fields1,2,3. However, owing to the challenge of dealing with high ambient moisture absorption, the development of remote open-air broadband terahertz spectroscopy is lagging behind the urgent need for the technology that exists in homeland security and the fields of astronomy and environmental monitoring3,4. The requirement for on-site bias or forward collection of the optical signal in conventional terahertz detection techniques has inevitably prohibited their use in remote sensing5,6,7. We introduce an ‘all-optical’ technique of broadband terahertz wave detection by coherently manipulating the fluorescence emission from asymmetrically ionized gas plasma interacting with terahertz waves. Owing to the high atmospheric transparency and omnidirectional emission pattern of the fluorescence, this technique can be used to measure terahertz pulses at standoff distances with minimal water vapour absorption and unlimited directionality for optical signal collection. We demonstrate coherent terahertz wave detection at a distance of 10 m.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the terahertz wave remote sensing technique.
Figure 2: The terahertz wave assisted electron impact ionization of high-lying states in plasma.
Figure 3: Differential THz-REEF, coherent terahertz detection and simulation.
Figure 4: Broadband terahertz wave remote sensing.
Figure 5: Two-colour phase dependence of fluorescence and terahertz wave emission.

Similar content being viewed by others

References

  1. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    Article  ADS  Google Scholar 

  2. Mittleman, D. Sensing with Terahertz Radiation (Springer, 2003).

    Book  Google Scholar 

  3. Tonouchi, M., Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  4. Federici, J. F. et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266–S280 (2005).

    Article  Google Scholar 

  5. Exter, M. V., Fattinger, Ch. & Grischkowsky, D. High-brightness terahertz beams characterized with an ultrafast detector. Appl. Phys. Lett. 55, 337–339 (1989).

    Article  ADS  Google Scholar 

  6. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article  ADS  Google Scholar 

  7. Dai, J., Xie, X. & Zhang, X.-C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006).

    Article  ADS  Google Scholar 

  8. Dai, J., Liu, J. & Zhang, X.-C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE J. Sel. Topics Quantum Electron. (in the press).

  9. Dai, J., Karpowicz, N. & Zhang, X.-C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009).

    Article  ADS  Google Scholar 

  10. Liu, J. & Zhang, X.-C. Terahertz radiation enhanced emission of fluorescence from gas plasma. Phys. Rev. Lett. 103, 235002 (2009).

    Article  ADS  Google Scholar 

  11. Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).

    Article  ADS  Google Scholar 

  12. Kresβ M. et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Phys. 2, 327–331 (2006).

    Article  ADS  Google Scholar 

  13. Schumacher, D. W., Weihe, F., Muller, H. G. & Bucksbaum, P. H. Phase dependence of intense field ionization: a study using two colors. Phys. Rev. Lett. 73, 1344–1347 (1994).

    Article  ADS  Google Scholar 

  14. Kim, K. Y., Taylor, A. J., Glownia, J. H. & Rordriguez, G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photon. 2, 605–609 (2008).

    Article  Google Scholar 

  15. Kulander, K. C., Schafer, K. J. & Krause, J. L. Dynamic stabilization of hydrogen in an intense, high-frequency, pulsed laser field. Phys. Rev. Lett. 66, 2601–2604 (1991).

    Article  ADS  Google Scholar 

  16. Fedorov, M. V. Progress in Ultrafast Intense Laser Science Vol. I (Springer, 2006).

    Google Scholar 

  17. Talebpour, A., Liang, Y. & Chin, S. L. Population trapping in the CO molecule. J. Phys. B 29, 3435–3442 (1996).

    Article  ADS  Google Scholar 

  18. Talebpour, A., Chien, C. Y. & Chin, S. L. Population trapping in rare gases. J. Phys. B 29, 5725–5733 (1996).

    Article  ADS  Google Scholar 

  19. Azarm, A. et al. Direct observation of super-excited states in methane created by a femtosecond intense laser field. J. Phys. B 41, 225601 (2008).

    Article  ADS  Google Scholar 

  20. Phelps, A. V. Rotational and vibrational excitation of molecules by low-energy electrons. Rev. Mod. Phys. 40, 399–410 (1968).

    Article  ADS  Google Scholar 

  21. Filin, A., Compton, R., Romanov, D. A. & Levis, R. J. Impact-ionization cooling in laser-induced plasma filaments. Phys. Rev. Lett. 102, 155004 (2009).

    Article  ADS  Google Scholar 

  22. Xu, H. L., Azarm, A., Bernhardt, J., Kamali, Y. & Chin, S. L. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360, 171–175 (2009).

    Article  Google Scholar 

  23. Wen, H. & Lindenberg, A. M. Coherent terahertz polarization control through manipulation of electron trajectories. Phys. Rev. Lett. 103, 023902 (2009).

    Article  ADS  Google Scholar 

  24. Karpowicz, N. & Zhang, X.-C. Coherent terahertz echo of tunnel ionization in gases. Phys. Rev. Lett. 102, 093001 (2009).

    Article  ADS  Google Scholar 

  25. Exter, M. V., Fattinger, Ch. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).

    Article  ADS  Google Scholar 

  26. Dai, J. & Zhang, X.-C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Appl. Phys. Lett. 94, 021117 (2009).

    Article  ADS  Google Scholar 

  27. Yeh, K.-L., Hoffmann, M. C., Hebling, J. & Nelson, K. A. Generation of 10 µJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).

    Article  ADS  Google Scholar 

  28. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnelling ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  29. McDaniel, E. W. Collision Phenomena in Ionized Gases (John Wiley & Sons, 1964).

    Google Scholar 

  30. Mlejnek, M., Wright, E. M. & Moleney, J. V. Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air. IEEE J. Quantum. Electron. 35, 1771–1776 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Karpowicz for technical assistance and scientific discussions. We also gratefully acknowledge support from the National Science Foundation, Defense Threat Reduction Agency and the Department of Homeland Security through the DHS-ALERT Center under award no. 2008-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed the experiment and performed the simulation. J.D. designed the phase compensator and performed remote terahertz sensing. X.-C.Z. and S.L.C. provided theoretical analysis and guidance. X.-C.Z. initiated and supervised the project. All authors contributed to the final manuscript.

Corresponding author

Correspondence to X.-C. Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Dai, J., Chin, S. et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photon 4, 627–631 (2010). https://doi.org/10.1038/nphoton.2010.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing