Letter | Published:

Experimental demonstration of a heralded entanglement source

Nature Photonics volume 4, pages 549552 (2010) | Download Citation

Abstract

The heralded generation of entangled states is a long-standing goal in quantum information processing, because it is indispensable for a number of quantum protocols1,2. Polarization entangled photon pairs are usually generated through spontaneous parametric down-conversion3, but the emission is probabilistic. Their applications are generally accompanied by post-selection and destructive photon detection. Here, we report a source of entanglement generated in an event-ready manner by conditioned detection of auxiliary photons4. This scheme benefits from the stable and robust properties of spontaneous parametric down-conversion and requires only modest experimental efforts. It is flexible and allows the preparation efficiency to be significantly improved by using beamsplitters with different transmission ratios. We have achieved a fidelity better than 87% and a state preparation efficiency of 45% for the source. This could offer promise in essential photonics-based quantum information tasks, and particularly in enabling optical quantum computing by reducing dramatically the computational overhead5,6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  2. 2.

    , & The Physics of Quantum Information (Springer, 2000).

  3. 3.

    et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

  4. 4.

    & Conditional preparation of maximal polarization entanglement. Phys. Rev. A 67, 030101(R) (2003).

  5. 5.

    & Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

  6. 6.

    et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  7. 7.

    , , , & Multi-photon entanglement and interferometry. Rev. Mod. Phys. Preprint at (2008).

  8. 8.

    , , & Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

  9. 9.

    et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

  10. 10.

    et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

  11. 11.

    , , , & Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

  12. 12.

    , & A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  13. 13.

    State Preparation in Quantum Optics. PhD thesis, Univ. Wales (2000).

  14. 14.

    & Limitations on the creation of maximal entanglement. Phys. Rev. A 62, 064301 (2000).

  15. 15.

    et al. Heralded two-photon entanglement from probabilistic quantum logic operations on multiple parametric down-conversion sources. IEEE J. Sel. Top. Quantum Electron. 9, 1478–1481 (2003).

  16. 16.

    Three-photon frequency down-conversion as an event-ready source of entangled states. Phys. Rev. A 71, 033820 (2005).

  17. 17.

    , , & Multiphoton path entanglement by nonlocal bunching. Phys. Rev. Lett. 94, 090502 (2005).

  18. 18.

    , & Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007).

  19. 19.

    et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

  20. 20.

    , , & Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  21. 21.

    , , & Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

  22. 22.

    & Postselected versus nonpostselected quantum teleportation using parametric down-conversion. Phys. Rev. A 61, 042304 (2000).

  23. 23.

    , , & Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

  24. 24.

    , , , & Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

  25. 25.

    , , , & All-optical-fibre polarization-based quantum logic gate. Phys. Rev. A 79, 030303(R) (2009).

  26. 26.

    , , & Heralded generation of entangled photon pairs. Nature Photon. (in the press).

  27. 27.

    & New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

  28. 28.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  29. 29.

    , & Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001).

Download references

Acknowledgements

This work was supported by the European Commission through the European Research Council (ERC) Grant and the Specific Targeted Research Projects (STREP) project Hybrid Information Processing (HIP), the Chinese Academy of Sciences, the National Fundamental Research Program of China under grant no. 2006CB921900, and the National Natural Science Foundation of China. C.W. was additionally supported by the Schlieben-Lange Program of the ESF. The authors are grateful to Dr Xian-Min Jin for help in improving the figures.

Author information

Author notes

    • Claudia Wagenknecht
    •  & Che-Ming Li

    These authors contributed equally to this work

Affiliations

  1. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany

    • Claudia Wagenknecht
    • , Che-Ming Li
    • , Andreas Reingruber
    • , Xiao-Hui Bao
    • , Alexander Goebel
    • , Yu-Ao Chen
    • , Qiang Zhang
    •  & Jian-Wei Pan
  2. Department of Physics and National Center for Theoretical Sciences, National Cheng Kung University, Tainan 701, Taiwan

    • Che-Ming Li
  3. Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Xiao-Hui Bao
    • , Yu-Ao Chen
    • , Kai Chen
    •  & Jian-Wei Pan

Authors

  1. Search for Claudia Wagenknecht in:

  2. Search for Che-Ming Li in:

  3. Search for Andreas Reingruber in:

  4. Search for Xiao-Hui Bao in:

  5. Search for Alexander Goebel in:

  6. Search for Yu-Ao Chen in:

  7. Search for Qiang Zhang in:

  8. Search for Kai Chen in:

  9. Search for Jian-Wei Pan in:

Contributions

C.W., X.-H.B., Y.-A.C., Q.Z. and J.-W.P. designed the experiment. C.W., C.-M.L., A.R., A.G., Y.-A.C. and K.C. performed the experiment. C.W., C.-M.L., A.R., X.-H.B., K.C. and J.-W.P. analysed the data. C.W., C.-M.L., K.C. and J.-W.P. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Kai Chen or Jian-Wei Pan.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2010.123

Further reading