Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental demonstration of a heralded entanglement source

Abstract

The heralded generation of entangled states is a long-standing goal in quantum information processing, because it is indispensable for a number of quantum protocols1,2. Polarization entangled photon pairs are usually generated through spontaneous parametric down-conversion3, but the emission is probabilistic. Their applications are generally accompanied by post-selection and destructive photon detection. Here, we report a source of entanglement generated in an event-ready manner by conditioned detection of auxiliary photons4. This scheme benefits from the stable and robust properties of spontaneous parametric down-conversion and requires only modest experimental efforts. It is flexible and allows the preparation efficiency to be significantly improved by using beamsplitters with different transmission ratios. We have achieved a fidelity better than 87% and a state preparation efficiency of 45% for the source. This could offer promise in essential photonics-based quantum information tasks, and particularly in enabling optical quantum computing by reducing dramatically the computational overhead5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic set-up.
Figure 2: Experimental set-up for an event-ready entanglement source.
Figure 3: Efficiency of state preparation.
Figure 4: Experimental data for fidelity measurements.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  2. Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of Quantum Information (Springer, 2000).

  3. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  4. Śliwa, C. & Banaszek, K. Conditional preparation of maximal polarization entanglement. Phys. Rev. A 67, 030101(R) (2003).

    Article  ADS  MathSciNet  Google Scholar 

  5. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  6. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  7. Pan, J.-W., Chen, Z.-B., Zukowski, M., Weinfurter, H. & Zeilinger, A. Multi-photon entanglement and interferometry. Rev. Mod. Phys. Preprint at http://arXiv:0805.2853 (2008).

  8. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  9. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  10. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    Article  ADS  Google Scholar 

  11. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    Article  ADS  Google Scholar 

  12. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  13. Kok, P. State Preparation in Quantum Optics. PhD thesis, Univ. Wales (2000).

  14. Kok, P. & Braunstein, S. Limitations on the creation of maximal entanglement. Phys. Rev. A 62, 064301 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  15. Pittman, T. B. et al. Heralded two-photon entanglement from probabilistic quantum logic operations on multiple parametric down-conversion sources. IEEE J. Sel. Top. Quantum Electron. 9, 1478–1481 (2003).

    Article  ADS  Google Scholar 

  16. Hnilo, A. A. Three-photon frequency down-conversion as an event-ready source of entangled states. Phys. Rev. A 71, 033820 (2005).

    Article  ADS  Google Scholar 

  17. Eisenberg, H. S., Hodelin, J. F., Khoury, G. & Bouwmeester, D. Multiphoton path entanglement by nonlocal bunching. Phys. Rev. Lett. 94, 090502 (2005).

    Article  ADS  Google Scholar 

  18. Walther, P., Aspelmeyer M. & Zeilinger, A. Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007).

    Article  ADS  Google Scholar 

  19. Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  ADS  Google Scholar 

  20. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Q. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  21. Matthews, J. C. F., Politi, A., Stefanov, A. & O'Brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

    Article  ADS  Google Scholar 

  22. Kok, P. & Braunstein, S. Postselected versus nonpostselected quantum teleportation using parametric down-conversion. Phys. Rev. A 61, 042304 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  23. Clauser J., Horne, M., Shimony, A. & Holt, R. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  24. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  25. Clark, A. S., Fulconis, J., Rarity, J. G., Wadsworth, W. J. & O'Brien, J. L. All-optical-fibre polarization-based quantum logic gate. Phys. Rev. A 79, 030303(R) (2009).

    Article  ADS  Google Scholar 

  26. Barz, S., Cronenberg, G., Zeilinger, A. & Walther, P. Heralded generation of entangled photon pairs. Nature Photon. (in the press).

  27. Shih, Y. H. & Alley, C. O. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

    Article  ADS  Google Scholar 

  28. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  29. Lamas-Linares, A., Howell, J. & Bouwmeester, D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission through the European Research Council (ERC) Grant and the Specific Targeted Research Projects (STREP) project Hybrid Information Processing (HIP), the Chinese Academy of Sciences, the National Fundamental Research Program of China under grant no. 2006CB921900, and the National Natural Science Foundation of China. C.W. was additionally supported by the Schlieben-Lange Program of the ESF. The authors are grateful to Dr Xian-Min Jin for help in improving the figures.

Author information

Authors and Affiliations

Authors

Contributions

C.W., X.-H.B., Y.-A.C., Q.Z. and J.-W.P. designed the experiment. C.W., C.-M.L., A.R., A.G., Y.-A.C. and K.C. performed the experiment. C.W., C.-M.L., A.R., X.-H.B., K.C. and J.-W.P. analysed the data. C.W., C.-M.L., K.C. and J.-W.P. wrote the paper.

Corresponding authors

Correspondence to Kai Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagenknecht, C., Li, CM., Reingruber, A. et al. Experimental demonstration of a heralded entanglement source. Nature Photon 4, 549–552 (2010). https://doi.org/10.1038/nphoton.2010.123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing