Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasi-phase-matching of momentum and energy in nonlinear optical processes

Subjects

This article has been updated

Abstract

Quasi-phase-matching is an important technique in nonlinear optics and is in widespread use. It not only makes efficient frequency conversion possible, but also enables diverse applications such as beam and pulse shaping, multi-harmonic generation, high harmonic generation, all-optical processing and the generation of entangled photons. However, since its introduction in the early 1960s at the dawn of nonlinear optics, quasi-phase-matching has always been considered a technique in which a purely spatial modulation mitigates the momentum mismatch that dispersion imposes on the interacting photons. Here, we present an important and fundamental generalization of quasi-phase-matching in which spatiotemporal nonlinear optical diffraction allows for correction of both momentum and energy mismatch. This concept provides a powerful tool for manipulating light through nonlinear interactions, and suggests unique applications. Recent experiments provide evidence for the feasibility and importance of spatiotemporal quasi-phase-matching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extending the concept of spatial mismatch to spatiotemporal mismatch.
Figure 2: Spectrum of HHG for different QPM schemes around the 183rd harmonic.
Figure 3: Frequency tuning of HHG using spatiotemporal QPM.
Figure 4: Normalized evolution of the second-harmonic power for spatial and spatiotemporal QPM.
Figure 5: Generalized schemes for QPM.
Figure 6: Second-harmonic generation using an oblique STNPC.

Similar content being viewed by others

Change history

  • 11 June 2010

    In the version of this article initially published online, the figure legend was missing from Fig. 5. The error has been corrected for all versions of the article.

References

  1. Boyd, R. W. Nonlinear Optics 2nd edn (Academic Press, 2003).

    Google Scholar 

  2. Kapteyn, H. C., Cohen, O., Christov, I. & Murnane, M. M. Harnessing attosecond science in the quest for coherent X-rays. Science 317, 775–778 (2007).

    Article  ADS  Google Scholar 

  3. Shankar, R. Principles of Quantum Mechanics (Springer, 1994).

    Book  Google Scholar 

  4. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  5. Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    Article  ADS  Google Scholar 

  6. Zhu, S.-N., Zhu, Y.-Y. & Ming, N.-B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  ADS  Google Scholar 

  7. Bahabad, A., Ganany-Padowicz, A. & Arie, A. Engineering two-dimensional nonlinear photonic quasi-crystals. Opt. Lett. 33, 1386–1388 (2008).

    Article  ADS  Google Scholar 

  8. Baudrier-Raybaut, M., Haïdar, R., Kupecek, P., Lemasson, P. & Rosencher, E. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432, 374–376 (2004).

    Article  ADS  Google Scholar 

  9. Bahabad, A., Cohen, O., Murnane, M. & Kapteyn, H. Quasi-periodic and random quasi-phase matching of high harmonic generation. Opt. Lett. 33, 1936–1938 (2008).

    Article  ADS  Google Scholar 

  10. Bahabad, A. & Arie, A. Generation of optical vortex beams by nonlinear wave mixing. Opt. Express 15, 17619–17624 (2007).

    Article  ADS  Google Scholar 

  11. Freund, I. Nonlinear diffraction. Phys. Rev. Lett. 21, 1404–1406 (1968).

    Article  ADS  Google Scholar 

  12. Brillouin, L. Diffusion de la lumidre et des rayons X par un corps transparent homogdne. Ann. Phys. (Paris) 17, 88–122 (1922).

    ADS  Google Scholar 

  13. Morgenthaler, F. Velocity modulation of electromagnetic waves. IEEE Trans. Microwave Theory Tech. 6, 167–172 (1958).

    Article  ADS  Google Scholar 

  14. Shvartsburg, A. Optics of nonstationary media. Phys. Usp. 48, 797–823 (2005).

    Article  ADS  Google Scholar 

  15. Biancalana, F., Amann, A., Uskov, A. & O'Reilly, E. Dynamics of light propagation in spatiotemporal dielectric structures. Phys. Rev. E 75, 046607 (2007).

    Article  ADS  Google Scholar 

  16. Biancalana, F., Amann, A. & O'Reilly, E. Gap solitons in spatiotemporal photonic crystals. Phys. Rev. A 77, 011801 (2008).

    Article  ADS  Google Scholar 

  17. Wagner, N. et al. Extracting the phase of high-order harmonic emission from a molecule using transient alignment in mixed samples. Phys. Rev. A 76, 061403 (2007).

    Article  ADS  Google Scholar 

  18. Nienhuis, G. J. Polychromatic and rotating beams of light. Phys. B 39, S529–S544 (2006).

    Article  ADS  Google Scholar 

  19. Siddons, P., Bell, N. C., Cai, Y., Adams, C. S. & Hughes, I. G. Slow-light Faraday effect: an atomic probe with gigahertz bandwidth. Nature Photon. 3, 225–229 (2009).

    Article  ADS  Google Scholar 

  20. Zhang, X. et al. Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light. Nature Phys. 3, 270–275 (2007).

    Article  ADS  Google Scholar 

  21. Cohen, O. et al. Grating-assisted phase matching in extreme nonlinear optics. Phys. Rev. Lett. 99, 053902 (2007).

    Article  ADS  Google Scholar 

  22. Bahabad, A., Cohen, O., Murnane, M. & Kapteyn, H. Quasi-phase-matching and dispersion characterization of harmonic generation in the perturbative regime using counterpropagating beams. Opt. Express 16, 15923–15931 (2008).

    Article  ADS  Google Scholar 

  23. Hartinger, K., Nirmalgandhi, S., Wilson, J. & Bartels, R. Efficient nonlinear frequency conversion with a dynamically structured nonlinearity. Opt. Express 13, 6919–6930 (2005).

    Article  ADS  Google Scholar 

  24. Clerici, M. et al. Finite-energy, accelerating Bessel pulses. Opt. Express 16, 19807–19811 (2008).

    Article  ADS  Google Scholar 

  25. Arbore, M., Marco, O. & Fejer, M. Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings. Opt. Lett. 22, 865–867 (1997).

    Article  ADS  Google Scholar 

  26. Arie, A. & Voloch, N. Periodic, quasi-periodic and random quadratic nonlinear photonic crystals. Laser Photon. Rev. 4, 355–373 (2010).

    Article  ADS  Google Scholar 

  27. Hum, D. & Fejer, M. Quasi-phasematching. Physique 8, 180–198 (2007).

    Article  ADS  Google Scholar 

  28. Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nature Photon. 3, 395–398 (2009).

    Article  ADS  Google Scholar 

  29. Liao, J. et al. Red, yellow, green and blue—four-color light from a single, aperiodically poled LiTaO3 crystal. Appl. Phys. B 78, 265–267 (2004).

    Article  ADS  Google Scholar 

  30. Bahabad, A., Voloch, N., Arie, A. & Lifshitz, R. Experimental confirmation of the general solution to the multiple phase matching problem. J. Opt. Soc. Am. B 24, 1916–1921 (2007).

    Article  ADS  Google Scholar 

  31. Zaidi, H. et al. Entangling the optical frequency comb: simultaneous generation of multiple 2×2 and 2×3 continuous-variable cluster states in a single optical parametric oscillator. Laser Phys. 18, 659–666 (2008).

    Article  ADS  Google Scholar 

  32. Torres, J., Alexandrescu, A., Carrasco, S. & Torner, L. Quasi-phase-matching engineering for spatial control of entangled two-photon states. Opt. Lett. 29, 376–378 (2004).

    Article  ADS  Google Scholar 

  33. Ganany-Padowicz, A., Juwiler, I., Gayer, O., Bahabad, A. & Arie, A. All-optical polarization switch in a quadratic nonlinear photonic quasicrystal. Appl. Phys. Lett. 94, 091108 (2009).

    Article  ADS  Google Scholar 

  34. Langrock, C., Kumar, S., McGeehan, J., Willner, A. & Fejer, M. J. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. Light. Technol. 24, 2579–2592 (2006).

    Article  Google Scholar 

  35. Gaudiosi, D. et al. High-order harmonic generation from ions in a capillary discharge. Phys. Rev. Lett. 96, 203001 (2006).

    Article  ADS  Google Scholar 

  36. Geissler, M., Tempea, G. & Brabec, T. Phase-matched high-order harmonic generation in the nonadiabatic limit. Phys. Rev. A 62, 033817 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Army Research Office and from the National Science Foundation Engineering Research Center in EUV Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

A.B. conceived the idea. A.B., M.M.M. and H.C.K. developed the theory. A.B. performed the simulations. A.B., M.M.M. and H.C.K. wrote the paper.

Corresponding author

Correspondence to Alon Bahabad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahabad, A., Murnane, M. & Kapteyn, H. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nature Photon 4, 570–575 (2010). https://doi.org/10.1038/nphoton.2010.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing