Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer

Abstract

Plasmonics—the study of the interaction between electromagnetic waves and electron plasmas on metal surfaces and in metallic nanostructures—has received much attention in recent years, with potential new applications ranging from subwavelength photonic circuits to photothermal cancer therapy1,2,3,4,5. In many cases, however, the substantial attenuation of the electromagnetic wave due to absorption (ohmic loss) in the metal is of serious concern. Introduction of optical gain into the dielectric material adjacent to the metal surface has been identified as a means of compensating for the absorption loss6, but the experimental realization of lossless propagation or optical gain in plasmonic waveguides has proven elusive. Here, we demonstrate direct proof of plasmonic propagation with net positive gain over macroscopic distances. The gain is provided by an optically pumped layer of fluorescent conjugated polymer adjacent to the metal surface in a dielectric–metal–dielectric plasmonic waveguide.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of LRSPP waveguides containing a fluorescent polymer blend to provide optical gain and illustration of the gain measurement configuration.
Figure 2: Measurement and optimization of the propagation loss in 4-nm-thick gold LRSPP waveguides.
Figure 3: Transfer of excited-state energy from the fluorescent polymer to the LRSPP plasmonic waveguide.
Figure 4: Measurement of amplified spontaneous emission and optical net gain in LRSPP plasmonic waveguides.

References

  1. 1

    Maier, S. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  2. 2

    Bozhevolnyi, S. I. (ed.) Plasmonic Nanoguides and Circuits (World Scientific Publishing, 2008).

    Book  Google Scholar 

  3. 3

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  4. 4

    Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  Google Scholar 

  6. 6

    Sudarkin, A. N. & Demkovich, P. A. Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov. Phys. Tech. Phys. 34, 764–766 (1989).

    Google Scholar 

  7. 7

    Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Lawandy, N. M. Localized surface plasmon singularities in amplifying media. Appl. Phys. Lett. 85, 5040–5042 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Ambati, M. et al. Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 8, 3998–4001 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Grandidier, J. et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 9, 2935–2939 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Seidel, J., Grafstrom, S. & Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).

    ADS  Article  Google Scholar 

  12. 12

    Noginov, M. A. et al. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Popov, O., Zilbershtein, A. & Davidov, D. Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface–plasmon–resonance wavelength. Appl. Phys. Lett. 89, 191116 (2006).

    ADS  Article  Google Scholar 

  14. 14

    Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Article  Google Scholar 

  17. 17

    Fukui, M., So, V. C. Y. & Normandin, R. Lifetimes of surface-plasmons in thin silver films. Phys. Status Solidi B 91, K61–K64 (1979).

    ADS  Article  Google Scholar 

  18. 18

    Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal-films. Phys. Rev. B 33, 5186–5201 (1986).

    ADS  Article  Google Scholar 

  19. 19

    Berini, P. Plasmon-polariton modes guided by a metal film of finite width. Opt. Lett. 24, 1011–1013 (1999).

    ADS  Article  Google Scholar 

  20. 20

    Becker, H. et al. Soluble ppvs with enhanced performance—a mechanistic approach. Adv. Mater. 12, 42–48 (2000).

    Article  Google Scholar 

  21. 21

    Yang, X. & Loos, J. Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40, 1353–1362 (2007).

    ADS  Article  Google Scholar 

  22. 22

    Hide, F. et al. Semiconducting polymers: a new class of solid-state laser materials. Science 273, 1833–1836 (1996).

    ADS  Article  Google Scholar 

  23. 23

    Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    ADS  Article  Google Scholar 

  24. 24

    McGehee, M. D. et al. Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys. Rev. B 58, 7035–7039 (1998).

    ADS  Article  Google Scholar 

  25. 25

    Xia, R. D., Heliotis, G., Hou, Y. B. & Bradley, D. D. C. Fluorene-based conjugated polymer optical gain media. Org. Electron. 4, 165–177 (2003).

    Article  Google Scholar 

  26. 26

    Flämmich, M. et al. Dispersion-model-free determination of optical constants: application to materials for organic thin film devices. Appl. Opt. 48, 1507–1513 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Köhnen, A., Gather, M. C., Riegel, N., Zacharias, P. & Meerholz, K. Enhanced efficiency of multilayer organic light-emitting diodes with a low-refractive index hole-transport layer: an effect of improved outcoupling? Appl. Phys. Lett. 91, 113501 (2007).

    ADS  Article  Google Scholar 

  28. 28

    De Leon, I. & Berini, P. Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media. Phys. Rev. B 78, 161401 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Danz, N., Waldhäusl, R., Bräuer, A. & Kowarschik, R. Dipole lifetime in stratified media. J. Opt. Soc. Am. B 19, 412–419 (2002).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Icelandic Research Fund, grant no. 00700221021. The authors thank I. Bald and O. Ingolfsson (University of Iceland) for technical support, A. L. Sobiech for illustrations, and S. I. Bozhevolnyi (University of Southern Denmark), M. B. Christiansen and A. Kristensen (Technical University of Denmark), and J. Kremer (University of Cologne) for fruitful discussions.

Author information

Affiliations

Authors

Contributions

M.C.G. and K.L. conceived, designed and performed the experiments and analysed the data. K.M. contributed materials and N.D. performed simulations. All authors jointly wrote the paper.

Corresponding author

Correspondence to Malte C. Gather.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gather, M., Meerholz, K., Danz, N. et al. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon 4, 457–461 (2010). https://doi.org/10.1038/nphoton.2010.121

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing