Abstract
Temporal cavity solitons are packets of light persisting in a continuously driven nonlinear resonator. They are robust attracting states, readily excited through a phase-insensitive and wavelength-insensitive process. As such, they constitute an ideal support for bits in an optical buffer that would seamlessly combine three critical telecommunication functions, namely all-optical storage, all-optical reshaping and wavelength conversion. Here, with standard silica optical fibres, we report the first experimental observation of temporal cavity solitons. The cavity solitons are 4 ps long and are used to demonstrate storage of a data stream for more than a second. We also observe interactions of close cavity solitons, revealing for our set-up a potential capacity of up to 45,000 bits at 25 Gbit s−1. More fundamentally, cavity solitons are localized dissipative structures. Therefore, given that silica exhibits a pure instantaneous Kerr nonlinearity, our experiment constitutes one of the simplest examples of self-organization phenomena in nonlinear optics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).
Agrawal, G. P. Nonlinear Fiber Optics, Optics and Photonics Series 4th edn (Academic Press, San Diego, 2006).
Firth, W. J. & Weiss, C. O. Cavity and feedback solitons. Opt. Phot. News 13(2), 54–58 (2002).
Lugiato, L. A. Introduction to the feature section on cavity solitons: an overview. IEEE J. Quantum Electron. 39, 193–196 (2003).
Ackemann, T. & Firth, W. J. Dissipative solitons in pattern-forming nonlinear optical systems: cavity solitons and feedback solitons, in Dissipative Solitons Vol. 661, Lecture Notes in Physics 55–100 (Springer, 2005).
Akhmediev, N. N. & Ankiewicz, A. (eds). Dissipative solitons: from optics to biology and medicine. in Lecture Notes in Physics Vol. 751 (Springer, 2008).
Brambilla, M., Lugiato, L. A. & Stefani, M. Interaction and control of optical localized structures. Europhys. Lett. 34, 109–114 (1996).
McDonald, G. S. & Firth, W. J. Spatial solitary-wave optical memory. J. Opt. Soc. Am. B 7, 1328–1335 (1990).
Mitschke, F. & Schwache, A. Soliton ensembles in a nonlinear resonator. J. Opt. B: Quantum Semiclass. Opt. 10, 779–788 (1998).
Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).
McLaughlin, D. W., Moloney, J. V. & Newell, A. C. Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity. Phys. Rev. Lett. 51, 75–78 (1983).
Rosanov, N. N. & Khodova, G. V. Diffractive autosolitons in nonlinear interferometers. J. Opt. Soc. Am. B 7, 1057–1065 (1990).
Tlidi, M., Mandel, P. & Lefever, R. Localized structures and localized patterns in optical bistability. Phys. Rev. Lett. 73, 640–643 (1994).
Firth, W. J. & Scroggie, A. J. Optical bullet holes: Robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76, 1623–1626 (1996).
Tanguy, Y., Ackemann, T., Firth, W. J. & Jäger, R. Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett. 100, 013907 (2008).
Bakonyi, Z., Michaelis, D., Peschel, U., Onishchukov, G. & Lederer, F. Dissipative solitons and their critical slowing down near a supercritical bifurcation. J. Opt. Soc. Am. B 19, 487–491 (2002).
Brambilla, M., Maggipinto, T., Patera, G. & Columbo, L. Cavity light bullets: three-dimensional localized structures in a nonlinear optical resonator. Phys. Rev. Lett. 93, 203901 (2004).
Jenkins, S. D., Prati, F., Lugiato, L. A., Columbo, L. & Brambilla, M. Cavity light bullets in a dispersive Kerr medium. Phys. Rev. A 80, 033832 (2009).
Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).
Pedaci, F. et al. All-optical delay line using semiconductor cavity solitons. Appl. Phys. Lett. 92, 011101 (2008).
Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).
Haelterman, M., Trillo, S. & Wabnitz, S. Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett. 17, 745–747 (1992).
Murray, J. D. Mathematical biology. in Biomathematics Texts Vol. 19, 2nd edn (Springer-Verlag, 1993).
Glansdorff, P. & Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, 1971).
Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).
Scroggie, A. J. et al. Pattern formation in a passive Kerr cavity. Chaos, Solitons & Fractals 4, 1323–1354 (1994).
Firth, W. J. & Lord, A. Two-dimensional solitons in a Kerr cavity. J. Mod. Opt. 43, 1071–1077 (1996).
Firth, W. J. et al. Dynamical properties of two-dimensional Kerr cavity solitons. J. Opt. Soc. Am. B 19, 747–752 (2002).
Fraile-Peláez, F. J., Capmany, J. & Muriel, M. A. Transmission bistability in a double-coupler fiber ring resonator. Opt. Lett. 16, 907–909 (1991).
Coen, S. et al. Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator. J. Opt. Soc. Am. B 15, 2283–2293 (1998).
Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).
Coen, S. & Haelterman, M. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity. Opt. Lett. 26, 39–41 (2001).
Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. B 237, 37–72 (1952). Reprinted in Bull. Math. Biology 52, 153–197 (1990).
Coen, S. & Haelterman, M. Competition between modulational instability and switching in optical bistability. Opt. Lett. 24, 80–82 (1999).
Rozanov, N. N. Dissipative optical solitons in the absence of bistability and modulation instability. Optics & Spectroscopy 96, 569–574 (2004).
Jackson, D. A., Priest, R., Dandridge, A. & Tveten, A. B. Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Opt. 19, 2926–2929 (1980).
Barbay, S. et al. Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier. Opt. Lett. 31, 1504–1506 (2006).
Schäpers, B., Feldmann, M., Ackemann, T. & Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 85, 748–751 (2000).
Ramazza, P. L. et al. Tailoring the profile and interactions of optical localized structures. Phys. Rev. E 65, 066204 (2002).
Tlidi, M., Vladimirov, A. G. & Mandel, P. Interaction and stability of periodic and localized structures in optical bistable systems. IEEE J. Quantum Electron. 39, 216–226 (2003).
Aranson, I. S., Gorshkov, K. A., Lomov, A. S. & Rabinovich, M. I. Stable particle-like solutions of multidimensional nonlinear fields. Physica D 43, 435–453 (1990).
Bödeker, H. U., Liehr, A. W., Frank, T. D., Friedrich, R. & Purwins, H.-G. Measuring the interaction law of dissipative solitons. New J. Phys. 6, 62 (2004).
Moores, J. D. et al. 20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption. IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).
Boyd, R. W., Gauthier, D. J. & Gaeta, A. L. Applications of slow light in telecommunications. Opt. Phot. News 17(4), 18–23 (2006).
Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007).
Acknowledgements
The authors are grateful to A. Mussot and M. Taki from Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), Université de Lille 1 (Lille, France) and to T. Sylvestre and J.-M. Merolla, Université de Franche-Comté (Besançon, France) for lending us some experimental parts, as well as to M. Tlidi, Université Libre de Bruxelles (Brussels, Belgium), for fruitful discussions. This work was supported by the Belgian Science Policy Office (BELSPO) Interuniversity Attraction Pole (IAP) programme under grant no. IAP-6/10. F.L. acknowledges the support of the Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA) (Belgium). The participation of S.C. to this project was made possible thanks to a Research & Study Leave granted by The University of Auckland and to a visiting fellowship from the Fonds National de la Recherche Scientifique (FNRS) (Belgium). S.C. and The University of Auckland also provided the high-sampling rate oscilloscope necessary for this project. The work of S.C. is supported by a New Economy Research Fund (NERF) grant from The Foundation for Research, Science and Technology of the New Zealand government.
Author information
Authors and Affiliations
Contributions
F.L. performed the experiments, starting with the set-up built by S.C. for other studies, and analysed the results. S.C. helped analyse the results, supervised the experiments, and wrote the paper. Overall, F.L. and S.C. contributed equally to this work. P.K. provided day-to-day support both in the laboratory and on theoretical aspects. S.-P.G. helped with the autocorrelation measurement and in the analysis of the spectral fringes of pairs of CSs. Ph.E. is the group leader and obtained funding for this work. M.H. supervised the overall project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Leo, F., Coen, S., Kockaert, P. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon 4, 471–476 (2010). https://doi.org/10.1038/nphoton.2010.120
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.120
This article is cited by
-
Ultrashort dissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses
Nature Photonics (2024)
-
Nonlinear topological symmetry protection in a dissipative system
Nature Communications (2024)
-
Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity
Nature Photonics (2024)
-
Nozaki–Bekki solitons in semiconductor lasers
Nature (2024)
-
On the Temporal Tweezing of Cavity Solitons
Journal of Nonlinear Mathematical Physics (2024)