Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer

Abstract

Temporal cavity solitons are packets of light persisting in a continuously driven nonlinear resonator. They are robust attracting states, readily excited through a phase-insensitive and wavelength-insensitive process. As such, they constitute an ideal support for bits in an optical buffer that would seamlessly combine three critical telecommunication functions, namely all-optical storage, all-optical reshaping and wavelength conversion. Here, with standard silica optical fibres, we report the first experimental observation of temporal cavity solitons. The cavity solitons are 4 ps long and are used to demonstrate storage of a data stream for more than a second. We also observe interactions of close cavity solitons, revealing for our set-up a potential capacity of up to 45,000 bits at 25 Gbit s−1. More fundamentally, cavity solitons are localized dissipative structures. Therefore, given that silica exhibits a pure instantaneous Kerr nonlinearity, our experiment constitutes one of the simplest examples of self-organization phenomena in nonlinear optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Observation of an isolated CS.
Figure 3: The acronym of our institution stored all-optically with CSs.
Figure 4: Experimental observation of the interactions between close CSs.

Similar content being viewed by others

References

  1. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    Article  ADS  Google Scholar 

  2. Agrawal, G. P. Nonlinear Fiber Optics, Optics and Photonics Series 4th edn (Academic Press, San Diego, 2006).

    Google Scholar 

  3. Firth, W. J. & Weiss, C. O. Cavity and feedback solitons. Opt. Phot. News 13(2), 54–58 (2002).

    Article  ADS  Google Scholar 

  4. Lugiato, L. A. Introduction to the feature section on cavity solitons: an overview. IEEE J. Quantum Electron. 39, 193–196 (2003).

    Article  ADS  Google Scholar 

  5. Ackemann, T. & Firth, W. J. Dissipative solitons in pattern-forming nonlinear optical systems: cavity solitons and feedback solitons, in Dissipative Solitons Vol. 661, Lecture Notes in Physics 55–100 (Springer, 2005).

    Chapter  Google Scholar 

  6. Akhmediev, N. N. & Ankiewicz, A. (eds). Dissipative solitons: from optics to biology and medicine. in Lecture Notes in Physics Vol. 751 (Springer, 2008).

  7. Brambilla, M., Lugiato, L. A. & Stefani, M. Interaction and control of optical localized structures. Europhys. Lett. 34, 109–114 (1996).

    Article  ADS  Google Scholar 

  8. McDonald, G. S. & Firth, W. J. Spatial solitary-wave optical memory. J. Opt. Soc. Am. B 7, 1328–1335 (1990).

    Article  ADS  Google Scholar 

  9. Mitschke, F. & Schwache, A. Soliton ensembles in a nonlinear resonator. J. Opt. B: Quantum Semiclass. Opt. 10, 779–788 (1998).

    ADS  Google Scholar 

  10. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  11. McLaughlin, D. W., Moloney, J. V. & Newell, A. C. Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity. Phys. Rev. Lett. 51, 75–78 (1983).

    Article  ADS  Google Scholar 

  12. Rosanov, N. N. & Khodova, G. V. Diffractive autosolitons in nonlinear interferometers. J. Opt. Soc. Am. B 7, 1057–1065 (1990).

    Article  ADS  Google Scholar 

  13. Tlidi, M., Mandel, P. & Lefever, R. Localized structures and localized patterns in optical bistability. Phys. Rev. Lett. 73, 640–643 (1994).

    Article  ADS  Google Scholar 

  14. Firth, W. J. & Scroggie, A. J. Optical bullet holes: Robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76, 1623–1626 (1996).

    Article  ADS  Google Scholar 

  15. Tanguy, Y., Ackemann, T., Firth, W. J. & Jäger, R. Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett. 100, 013907 (2008).

    Article  ADS  Google Scholar 

  16. Bakonyi, Z., Michaelis, D., Peschel, U., Onishchukov, G. & Lederer, F. Dissipative solitons and their critical slowing down near a supercritical bifurcation. J. Opt. Soc. Am. B 19, 487–491 (2002).

    Article  ADS  Google Scholar 

  17. Brambilla, M., Maggipinto, T., Patera, G. & Columbo, L. Cavity light bullets: three-dimensional localized structures in a nonlinear optical resonator. Phys. Rev. Lett. 93, 203901 (2004).

    Article  ADS  Google Scholar 

  18. Jenkins, S. D., Prati, F., Lugiato, L. A., Columbo, L. & Brambilla, M. Cavity light bullets in a dispersive Kerr medium. Phys. Rev. A 80, 033832 (2009).

    Article  ADS  Google Scholar 

  19. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    Article  ADS  Google Scholar 

  20. Pedaci, F. et al. All-optical delay line using semiconductor cavity solitons. Appl. Phys. Lett. 92, 011101 (2008).

    Article  ADS  Google Scholar 

  21. Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Article  ADS  Google Scholar 

  22. Haelterman, M., Trillo, S. & Wabnitz, S. Additive-modulation-instability ring laser in the normal dispersion regime of a fiber. Opt. Lett. 17, 745–747 (1992).

    Article  ADS  Google Scholar 

  23. Murray, J. D. Mathematical biology. in Biomathematics Texts Vol. 19, 2nd edn (Springer-Verlag, 1993).

    Google Scholar 

  24. Glansdorff, P. & Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, 1971).

    MATH  Google Scholar 

  25. Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).

    MATH  Google Scholar 

  26. Scroggie, A. J. et al. Pattern formation in a passive Kerr cavity. Chaos, Solitons & Fractals 4, 1323–1354 (1994).

    Article  ADS  Google Scholar 

  27. Firth, W. J. & Lord, A. Two-dimensional solitons in a Kerr cavity. J. Mod. Opt. 43, 1071–1077 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  28. Firth, W. J. et al. Dynamical properties of two-dimensional Kerr cavity solitons. J. Opt. Soc. Am. B 19, 747–752 (2002).

    Article  ADS  Google Scholar 

  29. Fraile-Peláez, F. J., Capmany, J. & Muriel, M. A. Transmission bistability in a double-coupler fiber ring resonator. Opt. Lett. 16, 907–909 (1991).

    Article  ADS  Google Scholar 

  30. Coen, S. et al. Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator. J. Opt. Soc. Am. B 15, 2283–2293 (1998).

    Article  ADS  Google Scholar 

  31. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Article  ADS  Google Scholar 

  32. Coen, S. & Haelterman, M. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity. Opt. Lett. 26, 39–41 (2001).

    Article  ADS  Google Scholar 

  33. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. B 237, 37–72 (1952). Reprinted in Bull. Math. Biology 52, 153–197 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  34. Coen, S. & Haelterman, M. Competition between modulational instability and switching in optical bistability. Opt. Lett. 24, 80–82 (1999).

    Article  ADS  Google Scholar 

  35. Rozanov, N. N. Dissipative optical solitons in the absence of bistability and modulation instability. Optics & Spectroscopy 96, 569–574 (2004).

    Article  ADS  Google Scholar 

  36. Jackson, D. A., Priest, R., Dandridge, A. & Tveten, A. B. Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Opt. 19, 2926–2929 (1980).

    Article  ADS  Google Scholar 

  37. Barbay, S. et al. Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier. Opt. Lett. 31, 1504–1506 (2006).

    Article  ADS  Google Scholar 

  38. Schäpers, B., Feldmann, M., Ackemann, T. & Lange, W. Interaction of localized structures in an optical pattern-forming system. Phys. Rev. Lett. 85, 748–751 (2000).

    Article  ADS  Google Scholar 

  39. Ramazza, P. L. et al. Tailoring the profile and interactions of optical localized structures. Phys. Rev. E 65, 066204 (2002).

    Article  ADS  Google Scholar 

  40. Tlidi, M., Vladimirov, A. G. & Mandel, P. Interaction and stability of periodic and localized structures in optical bistable systems. IEEE J. Quantum Electron. 39, 216–226 (2003).

    Article  ADS  Google Scholar 

  41. Aranson, I. S., Gorshkov, K. A., Lomov, A. S. & Rabinovich, M. I. Stable particle-like solutions of multidimensional nonlinear fields. Physica D 43, 435–453 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  42. Bödeker, H. U., Liehr, A. W., Frank, T. D., Friedrich, R. & Purwins, H.-G. Measuring the interaction law of dissipative solitons. New J. Phys. 6, 62 (2004).

    Article  ADS  Google Scholar 

  43. Moores, J. D. et al. 20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption. IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

    Article  ADS  Google Scholar 

  44. Boyd, R. W., Gauthier, D. J. & Gaeta, A. L. Applications of slow light in telecommunications. Opt. Phot. News 17(4), 18–23 (2006).

    Article  ADS  Google Scholar 

  45. Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Mussot and M. Taki from Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), Université de Lille 1 (Lille, France) and to T. Sylvestre and J.-M. Merolla, Université de Franche-Comté (Besançon, France) for lending us some experimental parts, as well as to M. Tlidi, Université Libre de Bruxelles (Brussels, Belgium), for fruitful discussions. This work was supported by the Belgian Science Policy Office (BELSPO) Interuniversity Attraction Pole (IAP) programme under grant no. IAP-6/10. F.L. acknowledges the support of the Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA) (Belgium). The participation of S.C. to this project was made possible thanks to a Research & Study Leave granted by The University of Auckland and to a visiting fellowship from the Fonds National de la Recherche Scientifique (FNRS) (Belgium). S.C. and The University of Auckland also provided the high-sampling rate oscilloscope necessary for this project. The work of S.C. is supported by a New Economy Research Fund (NERF) grant from The Foundation for Research, Science and Technology of the New Zealand government.

Author information

Authors and Affiliations

Authors

Contributions

F.L. performed the experiments, starting with the set-up built by S.C. for other studies, and analysed the results. S.C. helped analyse the results, supervised the experiments, and wrote the paper. Overall, F.L. and S.C. contributed equally to this work. P.K. provided day-to-day support both in the laboratory and on theoretical aspects. S.-P.G. helped with the autocorrelation measurement and in the analysis of the spectral fringes of pairs of CSs. Ph.E. is the group leader and obtained funding for this work. M.H. supervised the overall project.

Corresponding author

Correspondence to François Leo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo, F., Coen, S., Kockaert, P. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon 4, 471–476 (2010). https://doi.org/10.1038/nphoton.2010.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing