Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

Abstract

All-optical signal processing is an approach used to dramatically decrease power consumption and speed up the performance of next-generation optical telecommunications networks1,2,3. Nonlinear optical effects such as four-wave mixing and parametric gain have been explored to realize all-optical functions in glass fibres4. An alternative approach is to use nanoscale engineering of silicon waveguides to enhance optical nonlinearities by up to five orders of magnitude5, enabling integrated chip-scale all-optical signal processing. Four-wave mixing within silicon nanophotonic waveguides has been used to demonstrate telecom-band (λ ≈ 1,550 nm) all-optical functions including wavelength conversion6,7,8,9, signal regeneration10 and tunable optical delay11. Despite these important advances, strong two-photon absorption12 of the telecom-band pump presents a fundamental obstacle, limiting parametric gain to values of several decibels13. Here, we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting broadband gain as high as 25.4 dB, using a mid-infrared pump near one-half the bandgap energy (E ≈ 0.55 eV, λ ≈ 2,200 nm), where parasitic two-photon absorption-related absorption vanishes12,14,15. This gain is high enough to compensate all insertion losses, resulting in 13-dB net off-chip amplification, using only an ultra-compact 4-mm silicon chip. Furthermore, engineering of higher-order waveguide dispersion16 can potentially enable mid-infrared-pumped silicon parametric oscillators17,18,19 and amplifiers for telecom-band optical signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineered silicon nanophotonic waveguide characteristics, mid-infrared FWM experiments and broadband on-chip optical parametric amplification.
Figure 2: Mid-infrared optical parametric amplifier performance characteristics.
Figure 3: Broadband mid-infrared light generation by efficient cascaded FWM.

Similar content being viewed by others

References

  1. Tucker, R. S. The role of optics and electronics in high-capacity routers. J. Lightwave Technol. 24, 4655–4673 (2006).

    Article  ADS  Google Scholar 

  2. Blumenthal, D. J., Prucnal, P. R. & Sauer, J. R. Photonic packet switches: architectures and experimental implementations. Proc. IEEE 82, 1650–1667 (1994).

    Article  Google Scholar 

  3. Cotter, D. et al. Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999).

    Article  Google Scholar 

  4. Radic, S. & McKinstrie, C. J. Optical amplification and signal processing in highly nonlinear optical fiber. IEICE Trans. Electron. E88-C, 859–869 (2005).

    Article  ADS  Google Scholar 

  5. Dadap, J. I. et al. Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. Opt. Express 16, 1280–1299 (2008).

    Article  ADS  Google Scholar 

  6. Claps, R., Raghunathan, V., Dimitropoulos, D. & Jalali, B. Anti-Stokes Raman conversion in silicon waveguides. Opt. Express 11, 2862–2872 (2003).

    Article  ADS  Google Scholar 

  7. Espinola, R. L., Dadap, J. I., Osgood, R. M. Jr, McNab, S. J. & Vlasov, Y. A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349 (2005).

    Article  ADS  Google Scholar 

  8. Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005).

    Article  ADS  Google Scholar 

  9. Rong, H., Kuo, Y.-H., Liu, A., Paniccia, M. & Cohen, O. High efficiency wavelength conversion of 10 Gb s−1 data in silicon waveguides. Opt. Express 14, 1182–1188 (2006).

    Article  ADS  Google Scholar 

  10. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  11. Dai, Y. et al. 1 µs tunable delay using parametric mixing and optical phase conjugation in Si waveguides. Opt. Express 17, 7004–7010 (2009).

    Article  ADS  Google Scholar 

  12. Raghunathan, V., Shori, R., Stafsudd, O. & Jalali, B. Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers. Phys. Status Solidi A 203, R38–R40 (2006).

    Article  ADS  Google Scholar 

  13. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  14. Jalali, B. et al. Prospects for silicon mid-IR Raman lasers. IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).

    Article  ADS  Google Scholar 

  15. Bristow, A. D., Rotenberg, N. & van Driel, H. M. Two-photon absorption and Kerr coefficients of silicon for 850–2,200 nm. Appl. Phys. Lett. 90, 191104 (2007).

    Article  ADS  Google Scholar 

  16. Dulkeith, E., Xia, F., Schares, L., Green, W. M. J. & Vlasov, Y. A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).

    Article  ADS  Google Scholar 

  17. Lin, Q., Johnson, T. J., Perahia, R., Michael, C. P. & Painter, O. J. A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Opt. Express 16, 10596–10610 (2008).

    Article  ADS  Google Scholar 

  18. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  19. Razzari, L. et al. CMOS compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  20. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  21. Hsieh, I.-W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

    Article  ADS  Google Scholar 

  22. Soref, R. A., Emelett, S. J. & Buchwald, W. R. Silicon waveguided components for the long-wave infrared region. J. Opt. A 8, 840–848 (2006).

    Article  ADS  Google Scholar 

  23. Soref, R. Towards silicon-based longwave integrated optoelectronics (LIO). Proc. SPIE 6898, 5 (2008).

    Google Scholar 

  24. Ebrahim-Zadeh, M. & Sorokina, I. T. Mid-Infrared Coherent Sources and Applications 1st edn (Springer, 2007).

  25. Agrawal, G. P. Nonlinear Fiber Optics 3rd edn (Academic Press, 2001).

  26. Lamont, M. R. E., de Sterke, C. M. & Eggleton, B. J. Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion. Opt. Express 15, 9458–9463 (2007).

    Article  ADS  Google Scholar 

  27. Chavez-Boggio, J. M. et al. 730-nm optical parametric conversion from near- to short-wave infrared band. Opt. Express 16, 5435–5443 (2008).

    Article  ADS  Google Scholar 

  28. Pearl, S., Rotenberg, N. & van Driel, H. M. Three photon absorption in silicon for 2,300−3,300 nm. Appl. Phys. Lett. 93, 131102 (2008).

    Article  ADS  Google Scholar 

  29. Turner-Foster, A. C., Foster, M. A., Salem, R., Gaeta, A. L. & Lipson, M. Frequency conversion in silicon waveguides over two-thirds of an octave. Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, CFR4 (2009).

  30. Park, J. S. et al. Mid-infrared four-wave mixing in silicon waveguides using telecom-compatible light sources. Proceedings of Frontiers in Optics, PDPB3 (2009).

Download references

Acknowledgements

The authors gratefully acknowledge help from the staff at the IBM Microelectronics Research Laboratory where the silicon nanophotonic OPA devices were fabricated, K. Reuter and B. Price for assistance with SEM images, and J. Dadap for assistance with optimization of the pulsed laser system used in the experiments. Thanks also go to T. Kippenberg, G. Roelkens, R. Soref, S. Assefa and J. Van Campenhout for many helpful and motivating discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.M.J.G. conceived and supervised the experiments, and developed the device fabrication process. X.L. performed the numerical dispersion engineering, effective nonlinearity and nonlinear pulse propagation calculations, under the supervision of R.M.O. X.L. and W.M.J.G. jointly designed the mid-infrared waveguide dimensions and performed the experiments. X.L., R.M.O., Y.A.V. and W.M.J.G. all contributed to the data analysis and writing of the manuscript.

Corresponding author

Correspondence to William M. J. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Osgood, R., Vlasov, Y. et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon 4, 557–560 (2010). https://doi.org/10.1038/nphoton.2010.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing