Abstract
Sub-wavelength dielectric gratings have emerged recently as a promising alternative to distributed Bragg reflection dielectric stacks for broadband, high-reflectivity filtering applications. Such a grating structure composed of a single dielectric layer with the appropriate patterning can sometimes perform as well as 30 or 40 dielectric distributed Bragg reflection layers, while providing new functionalities such as polarization control and near-field amplification. In this Letter, we introduce an interesting property of grating mirrors that cannot be realized by their distributed Bragg reflection counterpart: we show that a non-periodic patterning of the grating surface can give full control over the phase front of reflected light while maintaining a high reflectivity. This new feature of dielectric gratings allows the creation of miniature planar focusing elements that could have a substantial impact on a number of applications that depend on low-cost, compact optical components, from laser cavities to CD/DVD read/write heads.
Access options
Subscribe to Journal
Get full journal access for 1 year
$59.00
only $4.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.




References
- 1
Wang, S. S., Magnusson, R., Bagby, J. S. & Moharam, M. G. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 7, 1470–1474 (1990).
- 2
Wang, S. S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (1993).
- 3
Magnusson, R. & Wang, S. S. New principle for optical filters. Appl. Phys. Lett. 61, 1022–1024 (1992).
- 4
Magnusson, R., Ding, Y., Lee, K. J., Priambodo, P. S. & Wawro, D. Characteristics of resonant leaky mode biosensors. Proc. Soc. Photo-Opt. Instrum. Eng. 6008, 1–10 (2005).
- 5
Fattal, D., Sigalas, M., Pyayt, A., Li, Z. & Beausoleil, R. G. Guided-mode resonance sensor with extended spatial sensitivity. Proc. Soc. Photo-Opt. Instrum. Eng. 6640, 1–11 (2007).
- 6
Mateus, C., Huang, M., Deng, Y., Neureuther, A. & Chang-Hasnain, C. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett. 16, 518–520 (2004).
- 7
Mateus, C., Huang, M., Chen, L., Chang-Hasnain, C. & Suzuki, Y. Broad-band mirror (1.12–1.62 µm) using a subwavelength grating. IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
- 8
Huang, M., Zhou, Y. & Chang-Hasnain, C. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119–122 (2007).
- 9
Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Appl. Phys. Lett. 92, 171108 (2008).
- 10
Jung, I., Kim, S. & Solgaard, O. High reflectivity broadband photonic crystal mirror MEMS scanner. in IEEE Solid-State Sensors, Actuators and Microsystems Conference 2007 (TRANS-DUCERS 2007) 1513–1516 (2007).
- 11
Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A nanoelectromechanical tunable laser. Nature Photon. 2, 180–184 (2008).
- 12
Li, L. New formulation of the Fourier modal method for crossed surface relief gratings. J. Opt. Soc. Am. A 14, 2758–2767 (1997).
- 13
Avrutsky, I. A. & Sychugov, V. A. Reflection of a beam of finite size from a corrugated waveguide. J. Mod. Opt. 36, 1527–1539 (1989).
- 14
Nishiwaki, S., Asada, J. & Uchida, S. Optical head employing a concentric-circular focusing grating coupler. Appl. Opt. 33, 1819–1827 (1994).
- 15
Eriksson, N., Hagberg, M. & Larsson, A. Highly directional grating outcouplers with tailorable radiation characteristics. IEEE J. Quantum Electron. 32, 1038–1047 (1996).
- 16
Eriksson, N., Hagberg, M. & Larsson, A. Electron-beam defined surface gratings in algaas with precisely controlled duty cycle using a multiple line exposure technique. J. Vac. Sci. Technol. B 14, 184–186 (1996).
Author information
Affiliations
Contributions
D.F. and J.L. developed the initial wavefront control concept and reflector design, and provided the results of the numerical simulations. Z.P. carried out the device fabrication, and M.F. conducted the optical testing. R.G.B. supervised and coordinated the project. All authors contributed to the data analysis. D.F., J.L. and R.G.B. prepared the manuscript with input from M.F. and Z.P.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Fattal, D., Li, J., Peng, Z. et al. Flat dielectric grating reflectors with focusing abilities. Nature Photon 4, 466–470 (2010). https://doi.org/10.1038/nphoton.2010.116
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Principles, Functions, and Applications of Optical Meta‐Lens
Advanced Optical Materials (2021)
-
Stick-and-play metasurfaces for directional light outcoupling
Applied Physics Letters (2021)
-
Broadband mirrors for surface plasmon polaritons using integrated high-contrast diffraction gratings
Optics Express (2021)
-
Profilometry and stress analysis of suspended nanostructured thin films
Journal of Applied Physics (2021)
-
Broadband and Tunable Light Harvesting in Nanorippled MoS2 Ultrathin Films
ACS Applied Materials & Interfaces (2021)