Laser-induced water condensation in air

Abstract

Triggering rain on demand is an old dream of mankind, with a huge potential socio-economical benefit. To date, efforts have mainly focused on cloud-seeding using silver salt particles. We demonstrate that self-guided ionized filaments generated by ultrashort laser pulses are also able to induce water-cloud condensation in the free, sub-saturated atmosphere. Potential contributing mechanisms include photo-oxidative chemistry and electrostatic effects. As well as revealing the potential for influencing or triggering water precipitation, laser-induced water condensation provides a new tool for the remote sensing of nucleation processes in clouds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Laser-induced condensation in an atmospheric cloud chamber (T = −24 °C and RH = 230%).
Figure 2: Laser-induced condensation in a sub-saturated atmospheric cloud chamber (T = 60 °C, RH = 75–85%), observed through the scattered signal at 90°.
Figure 3: Laser-induced condensation experiment in the atmosphere.
Figure 4: Atmospheric diffusion chamber for laboratory experiments.

References

  1. 1

    Qiu, J. & Cressey, D. Taming the sky. Nature 453, 970–974 (2008).

    Article  Google Scholar 

  2. 2

    US National Research Council. Critical Issues in Weather Modification Research (National Academies, 2003).

  3. 3

    Langmuir, I. Growth of particles in smokes and clouds and the production of snow from supercooled clouds. Science 106, 505 (1947).

    Article  Google Scholar 

  4. 4

    Kasparian, J. et al. White-light filaments for atmospheric analysis. Science 301, 61–64 (2003).

    ADS  Article  Google Scholar 

  5. 5

    Couairon A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 44, 47–189 (2007).

    ADS  Article  Google Scholar 

  6. 6

    Bergé, L. Skupin, S., Nuter, R., Kasparian, J. & Wolf, J.-P. Ultrashort filaments of light in weakly-ionized, optically-transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Kasparian, J. & Wolf, J.-P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466–493 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Chin, S. L. et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges. Can. J. Phys. 83, 863–905 (2005).

    ADS  Article  Google Scholar 

  9. 9

    Béjot, P. et al. Higher-order Kerr terms allow ionization-free filamentation in air. Phys. Rev. Lett. 104, 103903 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Méjean, G. et al. Multifilamentation transmission through fog. Phys. Rev. E. 72, 026611 (2005).

    ADS  Article  Google Scholar 

  11. 11

    La Fontaine, B. et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air. Phys. Plasma 6, 1615–1621 (1999).

    ADS  Article  Google Scholar 

  12. 12

    Rodriguez, M. et al. Kilometer-range non-linear propagation of femtosecond laser pulses. Phys. Rev. E 69, 036607 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Chin, S. L. et al. Filamentation of femtosecond laser pulses in turbulent air. Appl. Phys. B 74, 67–76 (2002).

    ADS  Article  Google Scholar 

  14. 14

    Salamé, R., Lascoux, N., Salmon, E., Kasparian, J. & Wolf, J.-P. Propagation of laser filaments through an extended turbulent region. Appl. Phys. Lett. 91, 171106 (2007).

    ADS  Article  Google Scholar 

  15. 15

    Méchain, G. et al. Propagation of fs-TW laser filaments in adverse atmospheric conditions. Appl. Phys. B 80, 785–789 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Kasparian, J. et al. Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 5757–5763 (2008).

    ADS  Article  Google Scholar 

  17. 17

    Wille, H. et al. Teramobile: a mobile femtosecond–terawatt laser and detection system. Eur. Phys. J.—Appl. Phys. 20, 183–190 (2002).

    ADS  Article  Google Scholar 

  18. 18

    Kasparian, J., Sauerbrey, R. & Chin, S. L. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877–879 (2000).

    ADS  Article  Google Scholar 

  19. 19

    Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Kluwer Academic Publishing, 1997).

  20. 20

    Wilson, C. T. R. On a method of making visible the paths of ionising particles through a gas. Proc. R. Soc. Lond. A 85, 285–288 (1911).

    ADS  Article  Google Scholar 

  21. 21

    Yu, J. et al. Sonographic probing of laser filaments in air. Appl. Opt. 42, 7117–7117 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Cohen, R. D. Shattering of a liquid drop due to impact. Proc. R. Soc. Lond. A 435, 483–503 (1991).

    ADS  Article  Google Scholar 

  23. 23

    Villermaux, E. Fragmentation. Annu. Rev. Fluid Mech. 39, 419–446 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    Byers Brown, W. Photonucleation of water vapour in the presence of oxygen. Chem. Phys. Lett. 235, 94–98 (1995).

    ADS  Article  Google Scholar 

  25. 25

    Clark, I. D. & Noxon, J. F. Particle formation during water-vapor photolysis. Science 174, 941–944 (1971).

    ADS  Article  Google Scholar 

  26. 26

    He, F. & Hopke, P. K. SO2 oxidation and H2O–H2SO4 binary nucleation by radon decay. Aerosol Sci. Technol. 23, 411–421 (1995)

    ADS  Article  Google Scholar 

  27. 27

    Measures, R. M. Laser Remote Sensing—Fundamentals and Applications (Wiley Interscience, 1984).

  28. 28

    Tzortzakis, S., Prade, B., Franco, M. & Mysyrowicz, A. Time evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000).

    ADS  Article  Google Scholar 

  29. 29

    Aeronet project, NASA, back trajectory data for stations Leipzig (D), Hamburg (D), and Belsk (Pl), http://croc.gsfc.nasa.gov/aeronet/.

  30. 30

    Jaenicke, R. Tropospheric aerosol, in Aerosol–Cloud–Climate (Hobbs, P. V., ed.) (Academic Press, 1993).

  31. 31

    Quentzel, H., Ruppersberg, G. H. & Schellhase, R. Calculations about the systematic error of the visibility-meters measuring scattered light. Atmos. Environ. 9, 587–601 (1975).

    ADS  Article  Google Scholar 

  32. 32

    Caffrey, P. et al. In-cloud oxidation of SO2 by O3 and H2O2: cloud chamber measurements and modelling of particle growth. J. Geophys. Res. 106, 27587–27601 (2001).

    ADS  Article  Google Scholar 

  33. 33

    Langsdorf, A. Jr. A continuously sensitive diffusion cloud chamber. Rev. Sci. Instrum. 10, 91–103 (1939).

    ADS  Article  Google Scholar 

  34. 34

    Schönfeld, F., Graf, K. H., Hardt, S. & Butt, H. J. Evaporation dynamics of sessile liquid drops in still air with constant contact radius? Int. J. Heat Mass Transfer 51, 3696–3699 (2008).

    Article  Google Scholar 

  35. 35

    Saavedra, I. On the theory of the diffusion cloud chamber. Nucl. Instrum. 3, 85–89 (1958).

    Article  Google Scholar 

  36. 36

    Tohmfor, G. & Volmer, M. Die keimbilding unter dem einfluß elektrischer ladungen. Annalen der Physik 425, 109–131 (1938).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge J. Kirkby of CERN for fruitful discussions, I. Sorge of Institut für Meteorologie, FU-Berlin, Germany, for providing weather data, and T. L. Kucsera (GEST) at NASA/Goddard for back-trajectories (available at the aeronet.gsfc.nasa.gov website). This work was supported by the Deutsche Forschungsgemeinschaft, Agence Nationale de la Recherche (Project ANR-05-Blan-0187), the Fonds National Suisse de la Recherche Scientifique (FNS, grant nos. 200021-116198 and 200021-125315), and the Swiss Secrétariat d'État à l'Éducation et à la Recherche in the framework of the COST P18 project ‘The Physics of Lightning Flash and its Effects’.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. More specifically, P.R., J.K., K.S., L.W. and J.-P.W. conceived and designed the study. P.R., K.S., Z.H., S.H., N.L., W.N., Y.P., M.Q., R.S. and E.S. performed the experiments. P.R., J.K. and K.S. analysed the data, and J.K., L.W. and J.-P.W. wrote the paper.

Corresponding author

Correspondence to Jérôme Kasparian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rohwetter, P., Kasparian, J., Stelmaszczyk, K. et al. Laser-induced water condensation in air. Nature Photon 4, 451–456 (2010). https://doi.org/10.1038/nphoton.2010.115

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing