Abstract
Triggering rain on demand is an old dream of mankind, with a huge potential socio-economical benefit. To date, efforts have mainly focused on cloud-seeding using silver salt particles. We demonstrate that self-guided ionized filaments generated by ultrashort laser pulses are also able to induce water-cloud condensation in the free, sub-saturated atmosphere. Potential contributing mechanisms include photo-oxidative chemistry and electrostatic effects. As well as revealing the potential for influencing or triggering water precipitation, laser-induced water condensation provides a new tool for the remote sensing of nucleation processes in clouds.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Filamentation in low pressure conditions
Scientific Reports Open Access 09 December 2022
-
Wavelength scaling of electron collision time in plasma for strong field laser-matter interactions in solids
Communications Physics Open Access 13 May 2021
-
Aluminum-target-assisted femtosecond-laser-filament-induced water condensation and snow formation in a cloud chamber
Scientific Reports Open Access 27 December 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Qiu, J. & Cressey, D. Taming the sky. Nature 453, 970–974 (2008).
US National Research Council. Critical Issues in Weather Modification Research (National Academies, 2003).
Langmuir, I. Growth of particles in smokes and clouds and the production of snow from supercooled clouds. Science 106, 505 (1947).
Kasparian, J. et al. White-light filaments for atmospheric analysis. Science 301, 61–64 (2003).
Couairon A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 44, 47–189 (2007).
Bergé, L. Skupin, S., Nuter, R., Kasparian, J. & Wolf, J.-P. Ultrashort filaments of light in weakly-ionized, optically-transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007).
Kasparian, J. & Wolf, J.-P. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466–493 (2008).
Chin, S. L. et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications and new challenges. Can. J. Phys. 83, 863–905 (2005).
Béjot, P. et al. Higher-order Kerr terms allow ionization-free filamentation in air. Phys. Rev. Lett. 104, 103903 (2010).
Méjean, G. et al. Multifilamentation transmission through fog. Phys. Rev. E. 72, 026611 (2005).
La Fontaine, B. et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air. Phys. Plasma 6, 1615–1621 (1999).
Rodriguez, M. et al. Kilometer-range non-linear propagation of femtosecond laser pulses. Phys. Rev. E 69, 036607 (2004).
Chin, S. L. et al. Filamentation of femtosecond laser pulses in turbulent air. Appl. Phys. B 74, 67–76 (2002).
Salamé, R., Lascoux, N., Salmon, E., Kasparian, J. & Wolf, J.-P. Propagation of laser filaments through an extended turbulent region. Appl. Phys. Lett. 91, 171106 (2007).
Méchain, G. et al. Propagation of fs-TW laser filaments in adverse atmospheric conditions. Appl. Phys. B 80, 785–789 (2005).
Kasparian, J. et al. Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 5757–5763 (2008).
Wille, H. et al. Teramobile: a mobile femtosecond–terawatt laser and detection system. Eur. Phys. J.—Appl. Phys. 20, 183–190 (2002).
Kasparian, J., Sauerbrey, R. & Chin, S. L. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71, 877–879 (2000).
Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Kluwer Academic Publishing, 1997).
Wilson, C. T. R. On a method of making visible the paths of ionising particles through a gas. Proc. R. Soc. Lond. A 85, 285–288 (1911).
Yu, J. et al. Sonographic probing of laser filaments in air. Appl. Opt. 42, 7117–7117 (2003).
Cohen, R. D. Shattering of a liquid drop due to impact. Proc. R. Soc. Lond. A 435, 483–503 (1991).
Villermaux, E. Fragmentation. Annu. Rev. Fluid Mech. 39, 419–446 (2007).
Byers Brown, W. Photonucleation of water vapour in the presence of oxygen. Chem. Phys. Lett. 235, 94–98 (1995).
Clark, I. D. & Noxon, J. F. Particle formation during water-vapor photolysis. Science 174, 941–944 (1971).
He, F. & Hopke, P. K. SO2 oxidation and H2O–H2SO4 binary nucleation by radon decay. Aerosol Sci. Technol. 23, 411–421 (1995)
Measures, R. M. Laser Remote Sensing—Fundamentals and Applications (Wiley Interscience, 1984).
Tzortzakis, S., Prade, B., Franco, M. & Mysyrowicz, A. Time evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000).
Aeronet project, NASA, back trajectory data for stations Leipzig (D), Hamburg (D), and Belsk (Pl), http://croc.gsfc.nasa.gov/aeronet/.
Jaenicke, R. Tropospheric aerosol, in Aerosol–Cloud–Climate (Hobbs, P. V., ed.) (Academic Press, 1993).
Quentzel, H., Ruppersberg, G. H. & Schellhase, R. Calculations about the systematic error of the visibility-meters measuring scattered light. Atmos. Environ. 9, 587–601 (1975).
Caffrey, P. et al. In-cloud oxidation of SO2 by O3 and H2O2: cloud chamber measurements and modelling of particle growth. J. Geophys. Res. 106, 27587–27601 (2001).
Langsdorf, A. Jr. A continuously sensitive diffusion cloud chamber. Rev. Sci. Instrum. 10, 91–103 (1939).
Schönfeld, F., Graf, K. H., Hardt, S. & Butt, H. J. Evaporation dynamics of sessile liquid drops in still air with constant contact radius? Int. J. Heat Mass Transfer 51, 3696–3699 (2008).
Saavedra, I. On the theory of the diffusion cloud chamber. Nucl. Instrum. 3, 85–89 (1958).
Tohmfor, G. & Volmer, M. Die keimbilding unter dem einfluß elektrischer ladungen. Annalen der Physik 425, 109–131 (1938).
Acknowledgements
The authors would like to acknowledge J. Kirkby of CERN for fruitful discussions, I. Sorge of Institut für Meteorologie, FU-Berlin, Germany, for providing weather data, and T. L. Kucsera (GEST) at NASA/Goddard for back-trajectories (available at the aeronet.gsfc.nasa.gov website). This work was supported by the Deutsche Forschungsgemeinschaft, Agence Nationale de la Recherche (Project ANR-05-Blan-0187), the Fonds National Suisse de la Recherche Scientifique (FNS, grant nos. 200021-116198 and 200021-125315), and the Swiss Secrétariat d'État à l'Éducation et à la Recherche in the framework of the COST P18 project ‘The Physics of Lightning Flash and its Effects’.
Author information
Authors and Affiliations
Contributions
All authors contributed extensively to the work presented in this paper. More specifically, P.R., J.K., K.S., L.W. and J.-P.W. conceived and designed the study. P.R., K.S., Z.H., S.H., N.L., W.N., Y.P., M.Q., R.S. and E.S. performed the experiments. P.R., J.K. and K.S. analysed the data, and J.K., L.W. and J.-P.W. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Rohwetter, P., Kasparian, J., Stelmaszczyk, K. et al. Laser-induced water condensation in air. Nature Photon 4, 451–456 (2010). https://doi.org/10.1038/nphoton.2010.115
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.115
This article is cited by
-
Spectral response of chirp-dependent femtosecond laser filamentation in air
Journal of the Korean Physical Society (2023)
-
Filamentation in low pressure conditions
Scientific Reports (2022)
-
Wavelength scaling of electron collision time in plasma for strong field laser-matter interactions in solids
Communications Physics (2021)
-
Cloud and precipitation interference by strong low-frequency sound wave
Science China Technological Sciences (2021)
-
Megafilament in air formed by self-guided terawatt long-wavelength infrared laser
Nature Photonics (2019)