Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-programmable liquid optical interface


Recently, there has been intense interest in photonic devices based on microfluidics, including displays1,2 and refractive tunable microlenses and optical beamsteerers3,4,5 that work using the principle of electrowetting6,7. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces8,9,10. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the device.
Figure 2: Plot of the peak-to-peak amplitude A of the wrinkle at the oil–air interface and interferograms at different voltages.
Figure 3: Transient response of the intensity of the reflection mode first diffracted order as a function of time.
Figure 4: Intensity of the zero-, first- and second-order peaks due to the diffraction of light at 543 nm.
Figure 5: Profiles at a hexadecane oil–air interface that have been created by the action of a non-uniform electric field profile.

Similar content being viewed by others


  1. Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003).

    Article  ADS  Google Scholar 

  2. Heikenfeld, J. & Steckl, A. J. High-transmission electrowetting light valves. Appl. Phys. Lett. 86, 151121 (2005).

    Article  ADS  Google Scholar 

  3. Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. Euro. Phys. J. E 3, 159–163 (2000).

    Article  Google Scholar 

  4. Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

    Article  ADS  Google Scholar 

  5. Smith, N. R., Abeysinghe, D. C., Haus, J. W. & Heikenfeld, J. Agile wide-angle beam steering with electrowetting microprisms. Opt. Express 14, 6557–6563 (2006).

    Article  ADS  Google Scholar 

  6. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–862 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  7. Mugele, F. & Baret, J. C. Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005).

    Article  Google Scholar 

  8. Pellat, H. Mésure de la force agissant sur les diélectriques liquides non électrisés placés dans un champ électrique. C. R. Acad. Sci. Paris 119, 691–694 (1895).

    Google Scholar 

  9. Pohl, H. A. Dielectrophoresis: The Behaviour of Neutral Matter in Non-Uniform Electric Fields, Cambridge Monographs on Physics (Cambridge Univ. Press, 1978).

    Google Scholar 

  10. Lorrain, P. & Corson, D. R. Electromagnetic Fields and Waves 2nd edn (W. H. Freeman, 1970).

    MATH  Google Scholar 

  11. Pethig, R. Using inhomogeneous a.c. electrical fields to separate and manipulate cells. Crit. Rev. Biotech. 16, 331–348 (1996).

    Article  Google Scholar 

  12. Jones, T. B., Gunjii, M., Washizu, M. & Feldman, M. J. Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys. 89, 1441–1448 (2001).

    Article  ADS  Google Scholar 

  13. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 2005).

    Google Scholar 

  14. Knovel Critical Tables 2nd edn (Knovel, 2003).

  15. Hutley, M. C. Diffraction Gratings (Academic Press, 1982).

    Google Scholar 

  16. Goodman, J. W. Introduction to Fourier Optics 2nd edn (McGraw-Hill, 1996).

    Google Scholar 

  17. Hubert, H. & Girault, H. H. Electrowetting: shake, rattle and roll. Nature Mater. 5, 851–852 (2006).

    Article  ADS  Google Scholar 

  18. Bucaro, M. A., Kolodner, P. R., Taylor, J. A., Sidorenko, A., Aizenberg, J. & Krupenkin, T. N. Tunable liquid optics: electrowetting-controlled liquid mirrors based on self-assembled janus tiles. Langmuir 25, 3876–3879 (2009).

    Article  Google Scholar 

  19. Herminghaus, S. Dynamical instability of thin liquid films between conducting media. Phys. Rev. Lett. 83, 2359–2361 (1999).

    Article  ADS  Google Scholar 

  20. Schäffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000).

    Article  ADS  Google Scholar 

  21. Staicu, A. & Mugele, F. Electrowetting-induced oil film entrapment and instability. Phys. Rev. Lett. 97, 167801 (2006).

    Article  ADS  Google Scholar 

  22. Komanduri, R. K., Chulwoo, O. & Escuti, M. J. Reflective liquid crystal polarization gratings with high efficiency and small pitch, in Liquid Crystals XII (ed. Khoo, Iam Choon) Proc. SPIE, 7050, 70500J (2008).

    Article  ADS  Google Scholar 

  23. De La Tocnaye, J. L. D. Engineering liquid crystals for optimal uses in optical communication systems. Liq. Cryst. 31, 241–269 (2004).

    Article  Google Scholar 

  24. Eldada, L. Optical communication components. Rev. Sci. Instrum. 75, 575–593 (2004).

    Article  ADS  Google Scholar 

  25. Mias, S. & Camon, H. A review of active optical devices: I. Amplitude modulation. J. Micromech. Microeng. 18, 083001 (2008).

    Article  ADS  Google Scholar 

  26. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    Article  ADS  Google Scholar 

Download references


The authors gratefully acknowledge J. Fyson at Kodak (European Research) Ltd and N. J. Shirtcliffe and C. L. Trabi at Nottingham Trent University for fruitful discussions. G.W. gratefully acknowledges The EPSRC/DTI COMIT Faraday Partnership and Kodak (European Research) Ltd for funding.

Author information

Authors and Affiliations



C.V.B., M.I.N. and G.M. conceived the concept and planning. C.V.B., G.G.W. and M.I.N. designed the experiment. C.V.B. and G.M. carried out theoretical work. C.V.B. wrote the paper and G.G.W. performed the experimental work and data analysis.

Corresponding author

Correspondence to C. V. Brown.

Supplementary information

Supplementary information

Supplementary information (PDF 579 kb)

Supplementary information

Supplementary information Movie 1 (AVI 49 kb)

Supplementary information

Supplementary information Movie 2 (AVI 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C., Wells, G., Newton, M. et al. Voltage-programmable liquid optical interface. Nature Photon 3, 403–405 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing