Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid and precise absolute distance measurements at long range

Abstract

The ability to determine absolute distance to an object is one of the most basic measurements of remote sensing. High-precision ranging has important applications in both large-scale manufacturing and in future tight formation-flying satellite missions, where rapid and precise measurements of absolute distance are critical for maintaining the relative pointing and position of the individual satellites. Using two coherent broadband fibre-laser frequency comb sources, we demonstrate a coherent laser ranging system that combines the advantages of time-of-flight and interferometric approaches to provide absolute distance measurements, simultaneously from multiple reflectors, and at low power. The pulse time-of-flight yields a precision of 3 µm with an ambiguity range of 1.5 m in 200 µs. Through the optical carrier phase, the precision is improved to better than 5 nm at 60 ms, and through the radio-frequency phase the ambiguity range is extended to 30 km, potentially providing 2 parts in 1013 ranging at long distances.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ranging concept.
Figure 2: Schematic of the experimental set-up.
Figure 3: Real-time image of the range versus time for a moving target (shown in false colour).
Figure 4: Residuals of the measured time-of-flight and interferometric range measurements versus truth data from a commercial c.w. interferometer.
Figure 5: Precision (Allan deviation) of the distance measurement versus averaging time.

References

  1. Cash, W., Shipley, A., Osterman, S. & Joy, M. Laboratory detection of X-ray fringes with a grazing-incidence interferometer. Nature 407, 160–162 (2000).

    ADS  Article  Google Scholar 

  2. White, N. X-ray astronomy—Imaging black holes. Nature 407, 146–147 (2000).

    ADS  Article  Google Scholar 

  3. Gendreau, K. C., Cash, W. C., Shipley, A. F. & White, N. MAXIM Pathfinder X-ray interferometry mission. Proc. SPIE—Int. Soc. Opt. Eng. 4851, 353–364 (2003).

    ADS  Google Scholar 

  4. ESA. XEUS: X-ray evolving-universe spectroscopy. ESA CDF Study Report CDF-31(A), 1–237 (2004).

    Google Scholar 

  5. Fridlund, M. Future space missions to search for terrestrial planets. Space Sci. Rev. 135, 355–369 (2008).

    ADS  Article  Google Scholar 

  6. Fridlund, C. V. M. Darwin-the infrared space interferometry mission. ESA Bulletin 103, <http://www.esa.int/esapub/bulletin/bullet103/fridlund103.pdf> 20–25 (2000).

    Google Scholar 

  7. Lawson, P. R. & Dooley, J. A. Technology plan for the terrestrial planet finder interferometer. Publ. Jet Propulsion Laboratory 05–5, 1–149 (2005).

    Google Scholar 

  8. Coroller, H. L., Dejonghe, J., Arpesella, C., Vernet, D. & Labeyrie, A. Tests with a Carlina-type hypertelescope prototype. Astron. Astrophys. 426, 721–728 (2004).

    ADS  Article  Google Scholar 

  9. Lemmerman, L. et al. Earth science vision: platform technology challenges. Scanning the present and resolving the future. Proc. IEEE 2001 International Geoscience and Remote Sensing Symposium (2001).

  10. Turyshev, S. G. & Shao, M. Laser astrometric test of relativity: Science, technology and mission design. Int. J. Mod. Phys. D 16, 2191–2203 (2007).

    ADS  Article  Google Scholar 

  11. Turyshev, S. G., Lane, B., Shao, M. & Girerd, A. A search for new physics with the BEACON mission. Preprint at <http://arxiv:0805.4033v1> (2008).

  12. Estler, W. T., Edmundson, K. L., Peggs, G. N. & Parker, D. H. Large-scale metrology—an update. CIRP Ann. Manuf. Technol. 51, 587–609 (2002).

    Article  Google Scholar 

  13. Bobroff, N. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 4, 907–926 (1993).

    ADS  Article  Google Scholar 

  14. Nagano, S. et al. Displacement measuring technique for satellite-to-satellite laser interferometer to determine Earth's gravity field. Meas. Sci. Technol. 15, 2406–2411 (2004).

    ADS  Article  Google Scholar 

  15. Pierce, R., Leitch, J., Stephens, M., Bender, P. & Nerem, R. Inter-satellite range monitoring using optical inteferometry. Appl. Opt. 47, 5007–5019 (2008).

    ADS  Article  Google Scholar 

  16. Beck, S. M. et al. Synthetic aperture imaging LADAR: laboratory demonstration and signal processing. Appl. Opt. 44, 7621–7629 (2005).

    ADS  Article  Google Scholar 

  17. Lucke, R. L., Richard, L. J., Bashkansky, M., Reintjes, J. & Funk, E. E. Synthetic aperture ladar. Naval Research Laboratory, FR 7218–02-10,051 1–28 (2002).

  18. Minoshima, K. & Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 39, 5512–5517 (2000).

    ADS  Article  Google Scholar 

  19. Dandliker, R., Thalmann, R. & Prongue, D. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett. 13, 339–341 (1988).

    ADS  Article  Google Scholar 

  20. Williams, C. C. & Wickramasinghe, H. K. Absolute optical ranging with 200-nm resolution. Opt. Lett. 14, 542–544 (1989).

    ADS  Article  Google Scholar 

  21. Stone, J. A., Stejskal, A. & Howard, L. Absolute interferometry with a 670-nm external cavity diode laser. Appl. Opt. 38, 5981–5994 (1999).

    ADS  Article  Google Scholar 

  22. Yang, H. J., Deibel, J., Nyberg, S. & Riles, K. High-precision absolute distance and vibration measurement with frequency scanned interferometry. Appl. Opt. 44, 3937–3944 (2005).

    ADS  Article  Google Scholar 

  23. Schuhler, N., Salvade, Y., Leveque, S., Dandliker, R. & Holzwarth, R. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett. 31, 3101–3103 (2006).

    ADS  Article  Google Scholar 

  24. Salvade, Y., Schuhler, N., Leveque, S. & Le Floch, S. High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source. Appl. Opt. 47, 2715–2720 (2008).

    ADS  Article  Google Scholar 

  25. Jin, J., Kim, Y.-J., Kim, Y. & Kim, S.-W. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt. Express 14, 5968–5974 (2006).

    ADS  Article  Google Scholar 

  26. Fox, R. W., Washburn, B. R., Newbury, N. R. & Hollberg, L. Wavelength references for interferometry in air. Appl. Opt. 44, 7793–7801 (2005).

    ADS  Article  Google Scholar 

  27. Lay, O. P. et al. MSTAR: a submicrometer, absolute metrology system. Opt. Lett. 28, 890–892 (2003).

    ADS  Article  Google Scholar 

  28. Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Article  Google Scholar 

  29. Hall, J. L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    ADS  Article  Google Scholar 

  30. Ye, J. Absolute measurement of long, arbitrary distance to less than an optical fringe. Opt. Lett. 29, 1153–1155 (2004).

    ADS  Article  Google Scholar 

  31. Joo, K.-N. & Kim, S.-W. Absolute distance measurement by dispersive interferometry using a femotsecond pulse laser. Opt. Express 14, 5954–5960 (2006).

    ADS  Article  Google Scholar 

  32. Swann, W. C. & Newbury, N. R. Frequency-resolved coherent lidar using a femtosecond fiber laser. Opt. Lett. 31, 826–828 (2006).

    ADS  Article  Google Scholar 

  33. Joo, K. N., Kim, Y. & Kim, S. W. Distance measurements by combined method based on a femtosecond pulse laser. Opt. Express 16, 19799–19806 (2008).

    ADS  Article  Google Scholar 

  34. Newbury, N. R., Swann, W. C. & Coddington, I. Lidar with femtosecond fiber-laser frequency combs. 14th Coherent Laser Radar Conference (Snowmass, Colorado, 2007).

  35. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain and mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    ADS  Article  Google Scholar 

  36. Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

    ADS  Article  Google Scholar 

  37. Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).

    ADS  Article  Google Scholar 

  38. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    ADS  Article  Google Scholar 

  39. Schlatter, A., Zeller, S. C., Pashcotta, R. & Keller, U. Simultaneous measurement of the phase noise on all optical modes of a mode-locked laser. Appl. Phys. B 88, 385–391 (2007).

    Article  Google Scholar 

  40. Giaccari, P., Deschenes, J.-D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).

    ADS  Article  Google Scholar 

  41. Dorrer, C., Kilper, D. C., Stuart, H. R., Raybon, G. & Raymer, M. G. Linear optical sampling. IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

    ADS  Article  Google Scholar 

  42. Dorrer, C. High-speed measurements for optical telecommunication systems. IEEE J. Quantum Electron. 12, 843–858 (2006).

    Article  Google Scholar 

  43. Ciddor, P. E. & Hill, R. J. Refractive index of air. 2. Group index. Appl. Opt. 38, 1663–1667 (1999).

    ADS  Article  Google Scholar 

  44. Telle, H. R., Lipphardt, B. & Stenger, J. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1–6 (2002).

    ADS  Article  Google Scholar 

  45. Stenger, J., Schnatz, H., Tamm, C. & Telle, H. R. Ultraprecise measurement of optical frequency ratios. Phys. Rev. Lett. 88, 073601 (2002).

    ADS  Article  Google Scholar 

  46. Newbury, N. R. & Swann, W. C. Low-noise fiber laser frequency combs. J. Opt. Soc. Am. B 24, 1756–1770 (2007).

    ADS  Article  Google Scholar 

  47. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    ADS  Article  Google Scholar 

  48. Hartl, I., Imshev, G., Fermann, M. E., Langrock, C. & Fejer, M. M. Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. Opt. Express 13, 6490–6496 (2005).

    ADS  Article  Google Scholar 

  49. Baumann, E. et al. A high-performance, vibration-immune fiber-laser frequency comb. Opt. Lett. 34, 638–640 (2009).

    ADS  Article  Google Scholar 

  50. Koch, B. R., Fang, A. W., Cohen, O. & Bowers, J. E. Mode-locked silicon evanescent lasers. Opt. Express 15, 11225–11233 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical assistance from C. Nelson and D. Nickel, as well as very helpful discussions with T. Fortier, D. Braje, N. Ashby, I. Bakalski, P. Bender, M. Foster, R. Holzwarth, J. Leitch, A. Newbury, R. Reibel, P. Roos, M. Stephens, J. Stone, C. Wiemer and P. Williams.

Author information

Authors and Affiliations

Authors

Contributions

I.C., W.C.S. and N.R.N. contributed equally to this work. L.N. assisted with the data analysis.

Corresponding authors

Correspondence to I. Coddington or N. R. Newbury.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coddington, I., Swann, W., Nenadovic, L. et al. Rapid and precise absolute distance measurements at long range. Nature Photon 3, 351–356 (2009). https://doi.org/10.1038/nphoton.2009.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.94

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing