Abstract
On-chip integrated photonic circuits are crucial to further progress towards quantum technologies and in the science of quantum optics. Here we report precise control of single photon states and multiphoton entanglement directly on-chip. We manipulate the state of path-encoded qubits using integrated optical phase control based on resistive elements, observing an interference contrast of 98.2 ± 0.3%. We demonstrate integrated quantum metrology by observing interference fringes with two- and four-photon entangled states generated in a waveguide circuit, with respective interference contrasts of 97.2 ± 0.4% and 92 ± 4%, sufficient to beat the standard quantum limit. Finally, we demonstrate a reconfigurable circuit that continuously and accurately tunes the degree of quantum interference, yielding a maximum visibility of 98.2 ± 0.9%. These results open up adaptive and fully reconfigurable photonic quantum circuits not just for single photons, but for all quantum states of light.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.





References
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden . Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).
Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).
Walther, P. et al. de Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).
Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).
Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).
Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).
Kawabe, Y., Fujiwara, H., Okamoto, R., Sasaki, K. & Takeuchi, S. Quantum interference fringes beating the diffraction limit. Opt. Express 15, 14244–14250 (2007).
Knill, E., Laamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).
Marshall, G. D. et al. Laser written waveguide photonic quantum circuits. <http://arxiv.org/abs/0902.4357> (2009).
Clark, A. S. et al. All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303 (2009).
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).
Kenichi, I. & Yokubun, Y. Encyclopedic Handbook of Integrated Optics (CRC Press, 2006).
Ou, Z. Y., Zou, X. Y., Wang, L. J. & Mandel, L. Experiment on nonclassical fourth-order interference. Phys. Rev. A 42, 2957–2965 (1990).
Rarity, J. G. et al. Two-photon interference in a Mach–Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990).
Kuzmich, A. & Mandel, L. Sub-shot-noise interferometric measurements with two-photon states. Quant. Semiclass. Opt. 10, 493–500 (1998).
Fonseca, E. J. S., Monken, C. H. & Pádua, S. Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett 82, 2868–2871 (1999).
Edamatsu, K., Shimizu, R. & Itoh, T. Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002).
Eisenberg, H. S., Hodelin, J. F., Khoury, G. & Bouwmeester, D. Multiphoton path entanglement by non-local bunching. Phys. Rev. Lett. 94, 090502 (2005).
Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).
Okamoto, R. et al. Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers. New J. Phys. 10, 073033 (2008).
Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002).
Steuernagel, O. de Broglie wavelength reduction for a multiphoton wave packet. Phys. Rev. A 65, 033820 (2002).
Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).
Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces Nat. Phys., 5, 134–140 (2009).
Sanaka, K., Resch, K. J. & Zeilinger, A. Filtering out photonic Fock states. Phys. Rev. Lett. 96, 083601 (2006).
Resch, K. J. et al. Entanglement generation by Fock-state filtration. Phys. Rev. Lett. 98, 203602 (2007).
Okamoto, R. et al. An entanglement filter. Science 323, 483–485 (2009).
Mino, S. Recent progress on PLC technologies for large-scale integration. Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, 27 (2007).
Kieling, K., Ruddolph, T. & Eisert, J. Percolation, renormalization, and quantum computing with nondeterministic gates. Phys. Rev. Lett. 99, 130501 (2007).
Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quant. Electron. 6, 69–82 (2000).
Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563–566 (2008).
Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)
Parigi, V., Zavatta, A., Kim, M. & Bellini, M. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrodinger kittens for quantum information processing. Science 312, 83–86 (2006).
Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).
O'Brien, J. L. Quantum computing over the rainbow. Physics 1, 23 (2008).
Pezzé, L., Smerzi, A., Khoury, G., Hodelin, J. F. & Bouwmeester, D. Phase detection at the quantum limit with multiphoton Mach–Zehnder interferometry. Phys. Rev. Lett. 99, 223602 (2007).
Berry, D. W. & Wiseman, H. M. Adaptive phase measurements for narrowband squeezed beams. Phys. Rev. A. 73, 063824 (2006).
Acknowledgements
We thank A. Laing, T. Nagata, S. Takeuchi and X. Q. Zhou for helpful discussions. This work was supported by IARPA, EPSRC, QIP IRC and the Leverhulme Trust.
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary information
Supplementary information (PDF 389 kb)
Rights and permissions
About this article
Cite this article
Matthews, J., Politi, A., Stefanov, A. et al. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon 3, 346–350 (2009). https://doi.org/10.1038/nphoton.2009.93
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2009.93
Further reading
-
Linear optical deterministic and reconfigurable SWAP gate
Quantum Information Processing (2021)
-
Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length $$4p^s$$ over $${\mathbb {F}}_{p^m}$$
Quantum Information Processing (2021)
-
Quantum MDS and synchronizable codes from cyclic codes of length $$5p^s$$ over $$\mathbb F_{p^m}$$
Applicable Algebra in Engineering, Communication and Computing (2021)
-
Integrated photonic quantum technologies
Nature Photonics (2020)
-
Programmable linear quantum networks with a multimode fibre
Nature Photonics (2020)