Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Manipulation of multiphoton entanglement in waveguide quantum circuits

Abstract

On-chip integrated photonic circuits are crucial to further progress towards quantum technologies and in the science of quantum optics. Here we report precise control of single photon states and multiphoton entanglement directly on-chip. We manipulate the state of path-encoded qubits using integrated optical phase control based on resistive elements, observing an interference contrast of 98.2 ± 0.3%. We demonstrate integrated quantum metrology by observing interference fringes with two- and four-photon entangled states generated in a waveguide circuit, with respective interference contrasts of 97.2 ± 0.4% and 92 ± 4%, sufficient to beat the standard quantum limit. Finally, we demonstrate a reconfigurable circuit that continuously and accurately tunes the degree of quantum interference, yielding a maximum visibility of 98.2 ± 0.9%. These results open up adaptive and fully reconfigurable photonic quantum circuits not just for single photons, but for all quantum states of light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manipulating quantum states of light on a chip.
Figure 2: Multiphoton state preparation.
Figure 3: Calibration of voltage-controlled phase shift.
Figure 4: Integrated quantum metrology.
Figure 5: A reconfigurable quantum circuit.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W. & Zbinden . Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  3. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  4. www.secoqc.net

  5. www.idQuantique.com

  6. www.magiqtech.com

  7. www.smartquantum.com

  8. Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    Article  ADS  Google Scholar 

  9. Walther, P. et al. de Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

    Article  ADS  Google Scholar 

  10. Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    Article  ADS  Google Scholar 

  11. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    Article  ADS  Google Scholar 

  12. Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000).

    Article  ADS  Google Scholar 

  13. Kawabe, Y., Fujiwara, H., Okamoto, R., Sasaki, K. & Takeuchi, S. Quantum interference fringes beating the diffraction limit. Opt. Express 15, 14244–14250 (2007).

    Article  ADS  Google Scholar 

  14. Knill, E., Laamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  15. O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  16. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  17. Marshall, G. D. et al. Laser written waveguide photonic quantum circuits. <http://arxiv.org/abs/0902.4357> (2009).

  18. Clark, A. S. et al. All-optical-fiber polarization-based quantum logic gate. Phys. Rev. A 79, 030303 (2009).

    Article  ADS  Google Scholar 

  19. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    Article  ADS  Google Scholar 

  20. Kenichi, I. & Yokubun, Y. Encyclopedic Handbook of Integrated Optics (CRC Press, 2006).

    Google Scholar 

  21. Ou, Z. Y., Zou, X. Y., Wang, L. J. & Mandel, L. Experiment on nonclassical fourth-order interference. Phys. Rev. A 42, 2957–2965 (1990).

    Article  ADS  Google Scholar 

  22. Rarity, J. G. et al. Two-photon interference in a Mach–Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990).

    Article  ADS  Google Scholar 

  23. Kuzmich, A. & Mandel, L. Sub-shot-noise interferometric measurements with two-photon states. Quant. Semiclass. Opt. 10, 493–500 (1998).

    Article  ADS  Google Scholar 

  24. Fonseca, E. J. S., Monken, C. H. & Pádua, S. Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett 82, 2868–2871 (1999).

    Article  ADS  Google Scholar 

  25. Edamatsu, K., Shimizu, R. & Itoh, T. Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002).

    Article  ADS  Google Scholar 

  26. Eisenberg, H. S., Hodelin, J. F., Khoury, G. & Bouwmeester, D. Multiphoton path entanglement by non-local bunching. Phys. Rev. Lett. 94, 090502 (2005).

    Article  ADS  Google Scholar 

  27. Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).

    Article  ADS  Google Scholar 

  28. Okamoto, R. et al. Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers. New J. Phys. 10, 073033 (2008).

    Article  ADS  Google Scholar 

  29. Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  30. Steuernagel, O. de Broglie wavelength reduction for a multiphoton wave packet. Phys. Rev. A 65, 033820 (2002).

    Article  ADS  Google Scholar 

  31. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  32. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  Google Scholar 

  33. Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces Nat. Phys., 5, 134–140 (2009).

    Article  Google Scholar 

  34. Sanaka, K., Resch, K. J. & Zeilinger, A. Filtering out photonic Fock states. Phys. Rev. Lett. 96, 083601 (2006).

    Article  ADS  Google Scholar 

  35. Resch, K. J. et al. Entanglement generation by Fock-state filtration. Phys. Rev. Lett. 98, 203602 (2007).

    Article  ADS  Google Scholar 

  36. Okamoto, R. et al. An entanglement filter. Science 323, 483–485 (2009).

    Article  ADS  Google Scholar 

  37. Mino, S. Recent progress on PLC technologies for large-scale integration. Optical Fiber Communication and Optoelectronics Conference, 2007 Asia, 27 (2007).

  38. Kieling, K., Ruddolph, T. & Eisert, J. Percolation, renormalization, and quantum computing with nondeterministic gates. Phys. Rev. Lett. 99, 130501 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  39. Wooten, E. L. et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quant. Electron. 6, 69–82 (2000).

    Article  ADS  Google Scholar 

  40. Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563–566 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  41. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  42. Parigi, V., Zavatta, A., Kim, M. & Bellini, M. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007).

    Article  ADS  Google Scholar 

  43. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  44. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrodinger kittens for quantum information processing. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  45. Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article  ADS  Google Scholar 

  46. O'Brien, J. L. Quantum computing over the rainbow. Physics 1, 23 (2008).

    Article  Google Scholar 

  47. Pezzé, L., Smerzi, A., Khoury, G., Hodelin, J. F. & Bouwmeester, D. Phase detection at the quantum limit with multiphoton Mach–Zehnder interferometry. Phys. Rev. Lett. 99, 223602 (2007).

    Article  ADS  Google Scholar 

  48. Berry, D. W. & Wiseman, H. M. Adaptive phase measurements for narrowband squeezed beams. Phys. Rev. A. 73, 063824 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Laing, T. Nagata, S. Takeuchi and X. Q. Zhou for helpful discussions. This work was supported by IARPA, EPSRC, QIP IRC and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan C. F. Matthews, Alberto Politi, André Stefanov or Jeremy L. O'Brien.

Supplementary information

Supplementary information

Supplementary information (PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, J., Politi, A., Stefanov, A. et al. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon 3, 346–350 (2009). https://doi.org/10.1038/nphoton.2009.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing