Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Infrared photovoltaics made by solution processing

Abstract

Solution-processed photovoltaics offer a cost-effective path to harvesting the abundant resource that is solar energy. The organic and polymer semiconductors at the heart of these devices generally absorb only visible light; however, half of the Sun's power reaching the Earth's surface lies in the infrared. Flexible solar cells that harvest wavelengths beyond 1 μm were first reported in 2005. In three years they have increased over 10,000-fold in power conversion efficiency. The latest devices achieve power conversion efficiencies in the infrared of more than 4%, values comparable to those of their organic and polymer counterparts in the visible. Here we review the progress and prospects for the field, focusing on new insights into how quantum-dot solar cells operate and how these findings give guidance on optimizing these devices to their full performance potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Sun's power spectrum reaching the Earth and its consequences for solar cell design.
Figure 2: Architecture of a typical solution-processed infrared photovoltaic cell.
Figure 3: Progress in infrared monochromatic power conversion efficiency of solution-processed photovoltaics.
Figure 4: Drift and diffusion of charge carriers in photovoltaics.
Figure 5: Spatial band diagram of a colloidal quantum-dot solid.
Figure 6: Breaking the extraction–absorption compromise through nanostructuring.

Similar content being viewed by others

References

  1. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  2. Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  ADS  Google Scholar 

  3. Nelson, J. in Physics of Solar Cells 450 (World Scientific, 2003).

    Book  Google Scholar 

  4. King, R. R. Multijunction cells: Record breakers. Nature Photon. 2, 284–286 (2008).

    Article  ADS  Google Scholar 

  5. Green, M. A., Emery, K., Hishikawa, Y. & Warta, W. Solar cell efficiency tables (Version 33). Prog. Photovolt. Res. Applic. 17, 85–94 (2009).

    Article  Google Scholar 

  6. Shah, A., Torres, P., Tscharner, R., Wyrsch, N. & Keppner, H. Photovoltaic technology: The case for thin-film solar cells. Science 285, 692–698 (1999).

    Article  Google Scholar 

  7. Klem, E. J. D., MacNeil, D. D., Cyr, P. W., Levina, L. & Sargent, E. H. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl. Phys. Lett. 90, 183113 (2007).

    Article  ADS  Google Scholar 

  8. Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Article  ADS  Google Scholar 

  9. Koleilat, G. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    Article  Google Scholar 

  10. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488 (2008).

    Article  ADS  Google Scholar 

  11. Klem, E. J. D., MacNeil, D. D., Levina, L. & Sargent, E. H. Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: Performance optimization and oxide formation. Adv. Mater. 20, 3433–3439 (2008).

    Article  Google Scholar 

  12. Winder, C. & Sariciftci, N. S. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14, 1077–1086 (2004).

    Article  Google Scholar 

  13. Johnston, K. W. et al. Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. Appl. Phys. Lett. 92, 122111 (2008).

    Article  ADS  Google Scholar 

  14. Clifford, J. P., Johnston, K. W., Levina, L. & Sargent, E. H. Schottky barriers to colloidal quantum dot films. Appl. Phys. Lett. 91, 253117 (2007).

    Article  ADS  Google Scholar 

  15. Coakley, K. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).

    Article  Google Scholar 

  16. Clifford, J. P. et al. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotech. 4, 40–44 (2009).

    Article  ADS  Google Scholar 

  17. Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  Google Scholar 

  18. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  ADS  Google Scholar 

  19. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  Google Scholar 

  20. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  ADS  Google Scholar 

  21. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  ADS  Google Scholar 

  22. Hoogland, S. et al. Megahertz-frequency large-area optical modulators at 1.55 μm based on solution-cast colloidal quantum dots. Opt. Express 16, 6683–6691 (2008).

    Article  ADS  Google Scholar 

  23. Dadosh, T. et al. Measurement of the conductance of single conjugated molecules. Nature 436, 677–680 (2005).

    Article  ADS  Google Scholar 

  24. Talapin, D. V. & Murray, C. B. Applied physics: PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  ADS  Google Scholar 

  25. Barkhouse, D. A. R., Pattantyus-Abraham, A. G., Levina, L. & Sargent, E. H. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2, 2356–2362 (2008).

    Article  Google Scholar 

  26. Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    Article  Google Scholar 

  27. Luther, J. M. et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    Article  Google Scholar 

  28. Westenhoff, S. et al. Charge recombination in organic photovoltaic devices with high open-circuit voltages. J. Am. Chem. Soc. 130, 13653–13658 (2008).

    Article  Google Scholar 

  29. Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8, 1446–1450 (2008).

    Article  ADS  Google Scholar 

  30. Lee, H. J. et al. CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-Sun intensity. J. Phys. Chem. C 112, 11600–11608 (2008).

    Article  Google Scholar 

  31. Hyun, B. et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008).

    Article  Google Scholar 

  32. Nozik, A. J. Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008).

    Article  ADS  Google Scholar 

  33. Klimov, V. I. Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl. Phys. Lett. 89, 123118 (2006).

    Article  ADS  Google Scholar 

  34. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  ADS  Google Scholar 

  35. Murphy, J. E. et al. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

    Article  Google Scholar 

  36. Schaller, R. D., Sykora, M., Jeong, S. & Klimov, V. I. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110, 25332–25338 (2006).

    Article  Google Scholar 

  37. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  ADS  Google Scholar 

  38. Smith, A. & Dutton, D. Behavior of lead sulfide photocells in the ultraviolet. J. Opt. Soc. Am. 48, 1007 (1958).

    Article  ADS  Google Scholar 

  39. Law, M. et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130, 5974–5985 (2008).

    Article  Google Scholar 

  40. Luque, A., Martí, A. & Nozik, A. J. Solar cells based on quantum dots: Multiple exciton generation and intermediate bands. MRS Bull. 32, 236–241 (2007).

    Article  Google Scholar 

  41. Jiang, X. et al. PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J. Mater. Res. 22, 2204–2210 (2007).

    Article  ADS  Google Scholar 

  42. Law, M. et al. Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett. 8, 3904 (2008).

    Article  ADS  Google Scholar 

  43. Beard, M. C. et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836–845 (2009).

    Article  ADS  Google Scholar 

  44. Wang, X. et al. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl. Phys. Lett. 85, 5081–5083 (2004).

    Article  ADS  Google Scholar 

  45. Mcdonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    Article  ADS  Google Scholar 

  46. Wang, X. et al. Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells. Adv. Funct. Mater. 15, 1665–1670 (2005).

    Article  Google Scholar 

  47. Zhang, S., Cyr, P. W., McDonald, S. A., Konstantatos, G. & Sargent, E. H. Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Appl. Phys. Lett. 87, 1–3 (2005).

    Google Scholar 

  48. Maria, A., Cyr, P. W., Klem, E. J. D., Levina, L. & Sargent, E. H. Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency. Appl. Phys. Lett. 87, 1–3 (2005).

    Article  Google Scholar 

  49. Wienk, M. M., Turbiez, M. G. R., Struijk, M. P., Fonrodona, M. & Janssen, R. A. J. Low-band gap poly(di-2-thienylthienopyrazine):fullerene solar cells. Appl. Phys. Lett. 88, 153511 (2006).

    Article  ADS  Google Scholar 

  50. Gunes, S. et al. Hybrid solar cells using PbS nanoparticles. Solar Energy Mater. Solar Cells 91, 420–423 (2007).

    Article  Google Scholar 

  51. Sun, M. et al. Near-infrared response photovoltaic device based on novel narrow band gap small molecule and PCBM fabricated by solution processing. Solar Energy Mater. Solar Cells 91, 1681–1687 (2007).

    Article  Google Scholar 

  52. Dissanayake, D. M. N. M. et al. A PbS nanocrystal–C60 photovoltaic device for infrared light harvesting. Appl. Phys. Lett. 91, 133506 (2007).

    Article  ADS  Google Scholar 

  53. Perzon, E. et al. A conjugated polymer for near infrared optoelectronic applications. Adv. Mater. 19, 3308–3311 (2007).

    Article  Google Scholar 

  54. Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank S. Hinds for producing the spatial band diagrams of Fig. 4.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargent, E. Infrared photovoltaics made by solution processing. Nature Photon 3, 325–331 (2009). https://doi.org/10.1038/nphoton.2009.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing