Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-infrared imaging with quantum-dot-sensitized organic photodiodes


Solution-processed photodiodes with infrared sensitivities at wavelengths beyond the bandgap of silicon (corresponding to a wavelength of 1,100 nm) would be a significant advance towards cost-effective imaging. Colloidal quantum dots are highly suitable as infrared absorbers for photodetection, but high quantum yields have only been reported with photoconductors1,2,3. For imaging, photodiodes are required to ensure low-power operation and compatibility to active matrix backplanes4. Organic bulk heterojunctions5 are attractive as solution-processable diodes, but are limited to use in the visible spectrum. Here, we report the fabrication and application of hybrid bulk heterojunction photodiodes containing PbS nanocrystalline quantum dots as sensitizers for near-infrared detection up to 1.8 µm, with rectification ratios of 6,000, minimum lifetimes of one year and external quantum efficiencies of up to 51%. By integration of the solution-processed devices on amorphous silicon active matrix backplanes, we demonstrate for the first time near-infrared imaging with organic/inorganic hybrid photodiodes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: PbS–QD-sensitized organic NIR imager.
Figure 2: Current–voltage and spectral properties of IO-HPDs.
Figure 3: Photoresponse and dynamic properties of hybrid photodiodes.
Figure 4: Characterization of the imager illuminated at 1,310 nm (1.6 mW cm−2).


  1. Koleilat, G. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    Article  Google Scholar 

  2. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  ADS  Google Scholar 

  3. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    Article  ADS  Google Scholar 

  4. Fossum, E. R. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans. Electron. Dev. 44, 1689–1698 (1997).

    Article  ADS  Google Scholar 

  5. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  Google Scholar 

  6. Schmitt, J. M., Xiang, S. H. & Yung, K. M. Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A 15, 2288–2296 (1998).

    Article  ADS  Google Scholar 

  7. Barton, J. B., Cannata, R. F. & Petronio, S. M. InGaAs NIR focal plane arrays for imaging and DWDM applications. Proc. SPIE 4721, 37–47 (2002).

    Article  ADS  Google Scholar 

  8. Källhammer, J.-E. Imaging: The road ahead for car night-vision Nature Photon. 12–13 (2006).

  9. Chu, L., Zrenner, A., Böhm, G. & Abstreiter, G. Normal-incident intersubband quantum dots photocurrent spectroscopy on InAs/GaAs. Appl. Phys. Lett. 75, 3599–3601 (1999).

    Article  ADS  Google Scholar 

  10. Liu, H. C. et al. A study of GaAs/AlGaAs p-type quantum well infrared photodetectors with different barrier heights. J. Appl. Phys. 83, 585–587 (1998).

    Article  ADS  Google Scholar 

  11. Hwang, I. W. et al. Ultrafast electron transfer and decay dynamics in a small band gap bulk heterojunction material. Adv. Mater. 19, 2307–2312 (2007).

    Article  Google Scholar 

  12. Yao, Y. et al. Plastic near-infrared photodetectors utilizing low band gap polymer. Adv. Mater. 19, 3979–3983 (2007).

    Article  Google Scholar 

  13. Natali, D., Sampietro, M., Arca, M., Denotti, C. & Devillanova, F. A. Wavelength-selective organic photodetectors for near-infrared applications based on novel neutral ditholenes. Synth. Met. 137, 1489–1490 (2003).

    Article  Google Scholar 

  14. Böberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 µm wavelengths. Adv. Mater. 19, 3574–3578 (2007).

    Article  Google Scholar 

  15. Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Article  ADS  Google Scholar 

  16. Yu, G., Yong, C., Wang, J., McElvain, J. & Heeger, A. J. High sensitivity polymer photosensors for image sensing applications. Synth. Met. 102, 904–907 (1999).

    Article  Google Scholar 

  17. Ng, T. N., Wong, W. S., Chabinyc, M. L., Sambandan, S. & Street, R. A. Flexible image sensor array with bulk heterojunction organic photodiode. Appl. Phys. Lett. 92, 213303 (2008).

    Article  ADS  Google Scholar 

  18. Tedde, S., Zaus, E., Fuerst, J., Henseler, D. & Lugli, P. Active pixel concept combined with organic photodiode for imaging devices. IEEE Electron. Dev. Lett. 28, 893–895 (2007).

    Article  ADS  Google Scholar 

  19. Ilan Gur, I., Fromer, N. A., Geier, M. L. & Paul Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  ADS  Google Scholar 

  20. Oertel, D. C., Bawendi, M. G., Arango, A. C. & Bulović, V. Photodetectors based on treated CdSe quantum-dot films. Appl. Phys. Lett. 87, 213505 (2005).

    Article  ADS  Google Scholar 

  21. Schilinsky, P., Waldauf, C. & Brabec, C. J. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81, 3885–3887 (2002).

    Article  ADS  Google Scholar 

  22. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  ADS  Google Scholar 

  23. Soci, C. et al. Photoconductivity of a low-bandgap conjugated polymer. Adv. Funct. Mater. 17, 632–636 (2007).

    Article  Google Scholar 

  24. Szendrei, K. et al. Solution-processable near infrared photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. DOI: 10.1002/adma (adma.200801752).

  25. Biebersdorf, A. et al. Semiconductor nanocrystals photosensitize C60 crystals. Nano Lett. 6, 1559–1563 (2006).

    Article  ADS  Google Scholar 

  26. Bawendi, M., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (‘Quantum Dots’). Ann. Rev. Phys. Chem. 41, 477–496 (1990).

    Article  ADS  Google Scholar 

  27. Cademartiri, L. et al. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 128, 10337–10346 (2006).

    Article  Google Scholar 

  28. Hines, M. A. & Scholes, G. D. Colloidal PbS nanocrystals with size-tuneable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844–1849 (2003).

    Article  Google Scholar 

  29. Paetzold, R., Winnacker, A., Henseler, D., Cesari, V. & Heuser, K. Permeation rate measurements by electrical analysis of calcium corrosion. Rev. Sci. Instrum. 74, 5147–5150 (2003).

    Article  ADS  Google Scholar 

  30. Sitter, D. N., Goddard, J. S. & Ferrell, R. K. Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns. Appl. Opt. 34, 746–751 (1995).

    Article  ADS  Google Scholar 

Download references


W.H. and M.K. are grateful for support from the Austrian Science Fund FWF (projects START Y179 and SFB-Iron).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Tobias Rauch or Oliver Hayden.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rauch, T., Böberl, M., Tedde, S. et al. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photon 3, 332–336 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing