Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Future optical technologies for telescopes

New optical technologies have revolutionized astronomy, from the invention of the telescope 400 years ago to more recent developments of adaptive optics and segmented mirrors. The next disruptive technologies could well emerge from integrated photonic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key optical innovations in astronomy.
Figure 2: The European Extremely Large Telescope.
Figure 3: Complex bulk optics: part of the VLTI Amber instrument.
Figure 4: An integrated optics four-way beam combiner.

References

  1. van Helden, A. Trans. Am. Phil. Soc. 67, 4 (1977).

    Google Scholar 

  2. Tobin, W. The Life and Science of Léon Foucault (Cambridge Univ. Press, 2003).

    Google Scholar 

  3. Zuccoli, M. & Bonoli, F. (eds) Guido Horn d'Arturo e lo specchio a tasselli (Cooperativa Libraria Universitaria Editrice Bologna, 1999).

    Google Scholar 

  4. Babcock, H. W. Publ. Astron. Soc. Pac. 65, 229–236 (1953).

    Article  ADS  Google Scholar 

  5. Marois, C. et al. Science 322, 1348–1352 (2008).

    Article  ADS  Google Scholar 

  6. Gillessen, S. et al. Astrophys. J. 692, 1075–1109 (2009).

    Article  ADS  Google Scholar 

  7. Butterley, T., Wilson, R. & Sarazin, M. Mon. Not. R. Astron. Soc. 369, 835–845 (2006).

    Article  ADS  Google Scholar 

  8. Benisty, M. et al. Astron. Astrophys. doi:10.1051/0004–6361/200811083 (2009).

  9. Labeye, P. Composants optiques intégrés pour l'interférométrie astronomique. Thesis, Inst. National Polytechnique de Grenoble (2008).

    Google Scholar 

  10. Thompson, R. R., Kar, A. K. & Allington-Smith, J. Opt. Express 17, 1963–1969 (2009).

    Article  ADS  Google Scholar 

  11. Bland-Hawthorn, J., Englund, M. & Edvell, G. Opt. Express, 12, 5902–5909 (2004).

    Article  ADS  Google Scholar 

  12. Bland-Hawthorn, J. & Horton, A. Proc. SPIE 6269, 62690N (2006).

    Google Scholar 

  13. Le Coarer, E. et al. Nature Photon. 1, 473–478 (2007).

    Article  ADS  Google Scholar 

  14. Pasquini, L. et al. Proc. SPIE 7014, 70141I (2008).

    Google Scholar 

  15. Corbett, J. C. Opt. Express 17, 1885–1901 (2009).

    Article  ADS  Google Scholar 

  16. Bland Hawthorn, J. & Kern, P. Opt. Express 17, 1880–1884 (2009).

    Article  ADS  Google Scholar 

  17. Allington-Smith, J. Proc. SPIE 7018, 70182P (2008).

    Google Scholar 

  18. http://www.astro-opticon.org/networking/key_tech.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunningham, C. Future optical technologies for telescopes. Nature Photon 3, 239–241 (2009). https://doi.org/10.1038/nphoton.2009.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing