Abstract
Plasmonic waveguides offer promise in providing a solution to the bandwidth limitations of classical electrical interconnections1,2,3. Fast, low-loss and error-free signal transmission has been achieved in long-range surface plasmon polariton waveguides4,5. Deep subwavelength plasmonic waveguides with short propagation lengths have also been demonstrated6,7, showing the possibility of matching the sizes of optics and today's electronic components. However, in order to combine surface plasmon waveguides with electronic circuits, new high-bandwidth electro-optical transducers need to be developed. Here, we experimentally demonstrate the electrical detection of surface plasmon polaritons in metallic slot waveguides. By means of an integrated metal–semiconductor–metal photodetector, highly confined surface plasmon polaritons in a metal–insulator–metal waveguide are detected and characterized. This approach of integrating electro-optical components in metallic waveguides could lead to the development of advanced active plasmonic devices and high-bandwidth on-chip plasmonic circuits.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Conway, J. A., Sahni, S. & Szkopek, T. Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. Opt. Express 15, 4474–4484 (2007).
Maier, S. A. Waveguiding: The best of both worlds. Nature Photon. 2, 460–461 (2008).
Zia, R., Schuller J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).
Ju, J. J. et al. 40 Gbit/s light signal transmission in long-range surface plasmon waveguides. Appl. Phys. Lett. 91, 171117 (2007).
Berini, P., Charbonneau, R., Lahoud, N. & Mattiussi, G. Characterization of long-range surface-plasmon-polariton waveguides. J. Appl. Phys. 98, 043109 (2005).
Dionne, J. A., Lezec, H. J. & Atwater, H. A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6, 1928–1932 (2006).
Chen, L., Shakya, J. & Lipson, M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).
Weeber, J., Lacroute, Y. & Dereux, A. Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. B 68, 115401 (2003).
Verhagen, E., Dionne, J. A., Kuipers, L., Atwater, H. A. & Polman, A. Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides. Nano Lett. 8, 2925–2929 (2008).
De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).
Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn Appl. Phys. 44, L364–L366 (2005).
Collin, S., Pardo, F. & Pelouard, J. Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector. Appl. Phys. Lett. 83, 1521–1523 (2003).
Kusunoki, F., Yotsuya, T., Takahara, J. & Kobayashi, T. Propagation properties of guided waves in index-guided two dimensional optical waveguides. Appl. Phys. Lett. 86, 211101 (2005).
Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).
Burm, J. et al. High-frequency, high-efficiency MSM photodetectors. IEEE J. Quantum Electron. 31, 1504–1509 (1995).
Kordos, P., Forster, A., Marso, M. & Ruders, F. 550 GHz bandwidth photodetector on low temperature grown molecular-beam epitaxial GaAs. IEEE Electron. Lett. 34, 119–120 (1998).
Chou, S. Y., Liu, Y. & Fischer, P. B. Terahertz GaAs metal–semiconductor–metal photodetectors with 25 nm finger spacing and finger width. Appl. Phys. Lett. 61, 477–479 (1992).
Chou, S. Y., Liu, Y., Khalil, W., Hsiang, T. Y. & Alexandrou, S. Ultrafast nanoscale metal–semiconductor–metal photodetectors on bulk and low-temperature grown GaAs. Appl. Phys. Lett. 61, 819–821 (1992).
Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).
Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).
Park, H. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008).
Singh, S. K., Kumbhar, A. A. & Dusane, R. O. Repairing plasma-damaged low-k HSQ films with trimethylchlorosilane treatment. Mater. Sci. Eng. B 127, 29–33 (2006).
Yu, C. & Chang, H. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt. Express 12, 6165–6177 (2004).
Acknowledgements
The authors thank J. Moonens for electron-beam exposures, E. Vandenplas and J. Feyaerts for technical support and W. van de Graaf for molecular beam epitaxy growth. P.V.D. thanks the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO)-Flanders for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neutens, P., Van Dorpe, P., De Vlaminck, I. et al. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon 3, 283–286 (2009). https://doi.org/10.1038/nphoton.2009.47
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2009.47
This article is cited by
-
Plasmonic Slot Waveguide Propagation Analysis
Plasmonics (2023)
-
Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer
Scientific Reports (2022)
-
Large Plasmonic Resonance Shifts from Metal Loss in Slits
Plasmonics (2022)
-
Reconfigurable and scalable 2,4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method
Scientific Reports (2021)
-
Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity
Journal of Computational Electronics (2021)