Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical detection of confined gap plasmons in metal–insulator–metal waveguides


Plasmonic waveguides offer promise in providing a solution to the bandwidth limitations of classical electrical interconnections1,2,3. Fast, low-loss and error-free signal transmission has been achieved in long-range surface plasmon polariton waveguides4,5. Deep subwavelength plasmonic waveguides with short propagation lengths have also been demonstrated6,7, showing the possibility of matching the sizes of optics and today's electronic components. However, in order to combine surface plasmon waveguides with electronic circuits, new high-bandwidth electro-optical transducers need to be developed. Here, we experimentally demonstrate the electrical detection of surface plasmon polaritons in metallic slot waveguides. By means of an integrated metal–semiconductor–metal photodetector, highly confined surface plasmon polaritons in a metal–insulator–metal waveguide are detected and characterized. This approach of integrating electro-optical components in metallic waveguides could lead to the development of advanced active plasmonic devices and high-bandwidth on-chip plasmonic circuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the waveguide-integrated MSM detector.
Figure 2: Numerical calculations for plane wave excitation.
Figure 3: IV curves for different laser intensities.
Figure 4: MSM photocurrent measurements.

Similar content being viewed by others


  1. Conway, J. A., Sahni, S. & Szkopek, T. Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. Opt. Express 15, 4474–4484 (2007).

    Article  ADS  Google Scholar 

  2. Maier, S. A. Waveguiding: The best of both worlds. Nature Photon. 2, 460–461 (2008).

    Article  ADS  Google Scholar 

  3. Zia, R., Schuller J. A., Chandran, A. & Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today 9, 20–27 (2006).

    Article  Google Scholar 

  4. Ju, J. J. et al. 40 Gbit/s light signal transmission in long-range surface plasmon waveguides. Appl. Phys. Lett. 91, 171117 (2007).

    Article  ADS  Google Scholar 

  5. Berini, P., Charbonneau, R., Lahoud, N. & Mattiussi, G. Characterization of long-range surface-plasmon-polariton waveguides. J. Appl. Phys. 98, 043109 (2005).

    Article  ADS  Google Scholar 

  6. Dionne, J. A., Lezec, H. J. & Atwater, H. A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6, 1928–1932 (2006).

    Article  ADS  Google Scholar 

  7. Chen, L., Shakya, J. & Lipson, M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).

    Article  ADS  Google Scholar 

  8. Weeber, J., Lacroute, Y. & Dereux, A. Optical near-field distributions of surface plasmon waveguide modes. Phys. Rev. B 68, 115401 (2003).

    Article  ADS  Google Scholar 

  9. Verhagen, E., Dionne, J. A., Kuipers, L., Atwater, H. A. & Polman, A. Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides. Nano Lett. 8, 2925–2929 (2008).

    Article  ADS  Google Scholar 

  10. De Vlaminck, I., Van Dorpe, P., Lagae, L. & Borghs, G. Local electrical detection of single nanoparticle plasmon resonance. Nano Lett. 7, 703–706 (2007).

    Article  ADS  Google Scholar 

  11. Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn Appl. Phys. 44, L364–L366 (2005).

    Article  ADS  Google Scholar 

  12. Collin, S., Pardo, F. & Pelouard, J. Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector. Appl. Phys. Lett. 83, 1521–1523 (2003).

    Article  ADS  Google Scholar 

  13. Kusunoki, F., Yotsuya, T., Takahara, J. & Kobayashi, T. Propagation properties of guided waves in index-guided two dimensional optical waveguides. Appl. Phys. Lett. 86, 211101 (2005).

    Article  ADS  Google Scholar 

  14. Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    Article  ADS  Google Scholar 

  15. Burm, J. et al. High-frequency, high-efficiency MSM photodetectors. IEEE J. Quantum Electron. 31, 1504–1509 (1995).

    Article  ADS  Google Scholar 

  16. Kordos, P., Forster, A., Marso, M. & Ruders, F. 550 GHz bandwidth photodetector on low temperature grown molecular-beam epitaxial GaAs. IEEE Electron. Lett. 34, 119–120 (1998).

    Article  Google Scholar 

  17. Chou, S. Y., Liu, Y. & Fischer, P. B. Terahertz GaAs metal–semiconductor–metal photodetectors with 25 nm finger spacing and finger width. Appl. Phys. Lett. 61, 477–479 (1992).

    Article  ADS  Google Scholar 

  18. Chou, S. Y., Liu, Y., Khalil, W., Hsiang, T. Y. & Alexandrou, S. Ultrafast nanoscale metal–semiconductor–metal photodetectors on bulk and low-temperature grown GaAs. Appl. Phys. Lett. 61, 819–821 (1992).

    Article  ADS  Google Scholar 

  19. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

    Article  ADS  Google Scholar 

  20. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  21. Park, H. et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photon. 2, 622–626 (2008).

    Article  Google Scholar 

  22. Singh, S. K., Kumbhar, A. A. & Dusane, R. O. Repairing plasma-damaged low-k HSQ films with trimethylchlorosilane treatment. Mater. Sci. Eng. B 127, 29–33 (2006).

    Article  Google Scholar 

  23. Yu, C. & Chang, H. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt. Express 12, 6165–6177 (2004).

    Article  ADS  Google Scholar 

Download references


The authors thank J. Moonens for electron-beam exposures, E. Vandenplas and J. Feyaerts for technical support and W. van de Graaf for molecular beam epitaxy growth. P.V.D. thanks the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO)-Flanders for financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pieter Neutens.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neutens, P., Van Dorpe, P., De Vlaminck, I. et al. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon 3, 283–286 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing