Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling the near-field oscillations of loaded plasmonic nanoantennas

Abstract

Optical and infrared antennas1,2,3,4,5,6 enable a variety of cutting-edge applications ranging from nanoscale photodetectors7 to highly sensitive biosensors8. All these applications critically rely on the optical near-field interaction between the antenna and its ‘load’ (biomolecules or semiconductors). However, it is largely unexplored how antenna loading affects the near-field response. Here, we use scattering-type near-field microscopy to monitor the evolution of the near-field oscillations of infrared gap antennas progressively loaded with metallic bridges of varying size. Our results provide direct experimental evidence that the local near-field amplitude and phase can be controlled by antenna loading, in excellent agreement with numerical calculations. By modelling the antenna loads as nanocapacitors and nanoinductors9,10,11, we show that the change of near-field patterns induced by the load can be understood within the framework of circuit theory. Targeted antenna loading provides an excellent means of engineering complex antenna configurations in coherent control applications12, adaptive nano-optics13 and metamaterials14.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mapping the near-field distribution of optical antennas with a transmission-mode s-SNOM.
Figure 2: Near-field images of progressively loaded nanoantennas at a wavelength of λ = 9.6 µm.
Figure 3: Time evolution of the antenna's near-field distribution f obtained from the experimental data of Fig. 2.
Figure 4: Comparison of numerical calculations and antenna theory.

References

  1. Grober, R.-D., Schoellkopf, R.-J. & Prober, D.-E. Optical antenna: Towards a unity efficient near-field optical probe. Appl. Phys. Lett. 70, 1354–1356 (1997).

    ADS  Article  Google Scholar 

  2. Crozier, K. B., Sundaramurthy, A., Kino, G. S. & Quate, C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003).

    ADS  Article  Google Scholar 

  3. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Article  Google Scholar 

  4. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    ADS  Article  Google Scholar 

  5. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F . Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  Google Scholar 

  6. Neubrech, F. et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403 (2008).

    ADS  Article  Google Scholar 

  7. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Article  Google Scholar 

  8. Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999).

    ADS  Article  Google Scholar 

  9. Alu, A. & Engheta, N. Input impedance, nanocircuit loading and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 101, 043901 (2008).

    ADS  Article  Google Scholar 

  10. Alu, A. & Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photon. 2, 307–310 (2008).

    Article  Google Scholar 

  11. Engheta, N., Salandrino, A. & Alu, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).

    ADS  Article  Google Scholar 

  12. Stockmann, M. I., Faleev, S. V. & Bergmann, D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 67402 (2002).

    ADS  Article  Google Scholar 

  13. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    ADS  Article  Google Scholar 

  14. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    ADS  Article  Google Scholar 

  15. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    ADS  Article  Google Scholar 

  16. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    ADS  Article  Google Scholar 

  17. Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., Van Hulst, N. F. & Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008).

    ADS  Article  Google Scholar 

  18. Atay, T., Song, J. H. & Nurmikko, A. V. Strongly interacting plasmon nanoparticle pairs: From dipole–dipole interaction to conductively coupled regime. Nano Lett. 4, 1627–1631 (2004).

    ADS  Article  Google Scholar 

  19. Romero, I., Aizpurua, J., Bryant, G. W. & de Abajo, F. J. G. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14, 9988–9999 (2006).

    ADS  Article  Google Scholar 

  20. Lassiter, J. B. et al. Close encounters between two nanoshells. Nano Lett. 8, 1212–1218 (2008).

    ADS  Article  Google Scholar 

  21. Keilmann, F. & Hillenbrand, R. Near-field optical microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. London, Ser. A 362, 787–805 (2004).

    ADS  Article  Google Scholar 

  22. Aizpurua, J. et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).

    ADS  Article  Google Scholar 

  23. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS  Article  Google Scholar 

  24. Olmon, R. L., Krenz, P. M., Jones, A. C., Boreman, G. D. & Raschke, M. B. Near-field imaging of optical antenna modes in the mid-infrared. Opt. Express 16, 20295–20305 (2008).

    ADS  Article  Google Scholar 

  25. Fumeaux, C. et al. Measurement of the resonant lengths of infrared dipole antennas. Infrared Phys. & Technol. 41, 271–281 (2000).

    ADS  Article  Google Scholar 

  26. Hillenbrand, R., Keilmann, F., Hanarp, P., Sutherland, D. S. & Aizpurua, J. Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl. Phys. Lett. 83, 368–370 (2003).

    ADS  Article  Google Scholar 

  27. Esteban, R. et al. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008).

    ADS  Article  Google Scholar 

  28. Yu, N. et al. Plasmonic quantum cascade laser antenna. Appl. Phys. Lett. 91, 173113 (2007).

    ADS  Article  Google Scholar 

  29. Garcia de Abajo, F. J. & Howie, A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys. Rev. Lett. 80, 5180–5183 (1998).

    ADS  Article  Google Scholar 

  30. Balanis, C. A. Antenna Theory (John Wiley & Sons, 2005).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Ziegler and A. Rigort (both Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie) for help with FIB milling and M. Raschke (Seattle) and N. Engheta (University of Pennsylvania) for stimulating discussions. We thank Nanosensors (Erlangen) for providing HF-etched silicon tips, F.J. García de Abajo for BEM tools and C.F. Quate and G.S. Kino (both Stanford University) for previous insights on the optical antennas studied in this Letter. This research was supported by the Etortek program of the Department of Industry of the Basque Government and the Basque Foundation for Science (Ikerbasque). J.A. acknowledges CSIC special intramural project PIE 2008601039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hillenbrand.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schnell, M., García-Etxarri, A., Huber, A. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photon 3, 287–291 (2009). https://doi.org/10.1038/nphoton.2009.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.46

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing