Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optomechanics of deformable optical cavities

Resonant optical cavities such as Fabry–Perot resonators or whispering-gallery structures are subject to radiation pressure pushing their reflecting 'walls' apart. Deformable optical cavities yield to this pressure, but in doing so they in turn affect the stored optical energy, resulting in an optical back-action. For such cavities the optics and the mechanics become strongly coupled, making them fascinating systems in which to explore theories of measurements at the quantum limit. Here we provide a summary of the current state of optomechanics of deformable optical cavities, identifying some of the most important recent developments in the field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Generic schematics of optomechanical sensors.
Figure 2: Wide range of sizes of optomechanical deformable cavity systems showing self-cooling effects.
Figure 3: Optomechanical radiation pressure self-cooling of deformable cavities.
Figure 4: Nonlinear dynamics of an optomechanical system.

References

  1. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  2. Rugar, D., Mamin, H. J. & Guethner, P. Improved fibre-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588 (1989).

    Article  ADS  Google Scholar 

  3. Reitze, D. Chasing gravitational waves. Nature Photon. 2, 582–585 (2008).

    Article  Google Scholar 

  4. Braginsky, V. B., Manukin, A. B. & Tikhonov, M. Yu. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 31, 829 (1970).

    ADS  Google Scholar 

  5. Braginsky, V. B. & Manukin, A. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977).

    Google Scholar 

  6. Hohberger Metzger, C. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  7. Braginsky, V. B., Kuznetsov, V. A. & Rudenko, V. N. Moscow Univ. Phys. Bull. 26, 92 (1971).

    Google Scholar 

  8. Braginsky, V. B. & Minakova, I. I. Vestn. Mosk. Univ. Fiz. 1, 69 (1964).

    Google Scholar 

  9. Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E. & Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550–1553 (1983).

    Article  ADS  Google Scholar 

  10. Mertz, J., Marti, O. & Mlyneck, J. Regulation of a microlever response by force feedback. Appl. Phys. Lett. 62, 2344 (1993).

    Article  ADS  Google Scholar 

  11. Milatz, J. M. W., Van Zolingen, J. J. & Van Iperen, B. B. The reduction in the Brownian motion of electrometers. Physica XIX, 195–207 (1953).

    Article  ADS  Google Scholar 

  12. Mancini, S., Vitali, D. & Tombesi, P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688–691 (1998).

    Article  ADS  Google Scholar 

  13. Cohadon, P., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    Article  ADS  Google Scholar 

  14. Braginsky, V. B. & Vyatchanin, S. P. Low quantum noise tranquilizer for Fabry–Pérot interferometer. Phys. Lett. A 293, 228–234 (2002).

    Article  ADS  Google Scholar 

  15. Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  16. Dykman, M. I. Heating and cooling of local and quasi-local vibrations by a nonresonance field. Sov. Phys. Solid State 20, 1306–1311 (1979).

    Google Scholar 

  17. Vogel, M., Mooser, C., Karrai, K. & Warburton, R. Optically tunable mechanics of microlevers. Appl. Phys. Lett. 83, 1337 (2003).

    Article  ADS  Google Scholar 

  18. Sheard, B. S., Gray, M. B., Mow-Lowry, C. M., McClelland, D. E. & Whitcomb, S. E. Observation and characterization of an optical spring. Phys. Rev. A 69, 051801 (2004).

    Article  ADS  Google Scholar 

  19. Hohberger, C. & Karrai, K. Self-oscillation of micromechanical resonators. Proc. 4th IEEE Conf. Nanotechnology, 419–421 (IEEE, 2004).

  20. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behaviour of radiation pressure induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    Article  ADS  Google Scholar 

  21. Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  22. Gigan, S. et al. Self-cooling of a micromirror by radiation-pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  23. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  24. Corbitt, T. et al. An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007).

    Article  ADS  Google Scholar 

  25. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  26. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever's fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article  ADS  Google Scholar 

  27. Mow-lowry, C. M., Mullavey, A. J., Gossler, S., Gray, M. B & McClelland, D. E. Cooling of a gram scale cantilever flexure to 70 mK with a servo modified optical spring. Phys. Rev. Lett. 100, 010801 (2008).

    Article  ADS  Google Scholar 

  28. Vinante, A. et al. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. Phys. Rev. Lett. 101, 033601 (2008).

    Article  ADS  Google Scholar 

  29. Metzger, C., Favero, I., Ortlieb, A. & Karrai, K. Optical self-cooling of a deformable Fabry–Perot cavity in the classical limit. Phys. Rev. B 78, 035309 (2008).

    Article  ADS  Google Scholar 

  30. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  31. Bose, J., Jacobs, K. & Knight, P. L. Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175–4186 (1997).

    Article  ADS  Google Scholar 

  32. Bose, J., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).

    Article  ADS  Google Scholar 

  33. Marshall, W., Simon, C., Penrose, R. & Bouweester, D. Towards quantum superposition of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  34. Leggett, A. J. Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter. 14, R415–451 (2002).

    Article  ADS  Google Scholar 

  35. Law, C. K. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995).

    Article  ADS  Google Scholar 

  36. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  37. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  38. Ludwig, M., Kubala, B. & Marquardt, F. The optomechanical instability in the quantum regime. New J. Phys. 10, 1–19 (2008).

    Google Scholar 

  39. Meystre, P., Wright, E. M., McCullen, J. D. & Vignes, E. Theory of radiation pressure driven interferometers. J. Opt. Soc. Am. B 2, 1830–1840 (1985).

    Article  ADS  Google Scholar 

  40. Battacharya, M., Uys, H. & Meystre, P. Optomechanical trapping and cooling of partially transparent mirrors. Phys. Rev. A 77, 1–12 (2008).

    Google Scholar 

  41. Favero, I. & Karrai, K. Cavity cooling of a nanomechanical resonator by light scattering. New J. Phys. 10, 095006 (2008).

    Article  ADS  Google Scholar 

  42. Favero, I. et al. Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101 (2007).

    Article  ADS  Google Scholar 

  43. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

    Article  Google Scholar 

  44. Karrai, K., Favero, I. & Metzger, C. Doppler optomechanics of a photonic crystal. Phys. Rev. Lett. 100, 240801 (2008).

    Article  ADS  Google Scholar 

  45. Marquardt, F., Harris, J. G. E & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).

    Article  ADS  Google Scholar 

  46. Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric back-action. Phys. Rev. Lett. 101, 133903 (2008).

    Article  ADS  Google Scholar 

  47. Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).

    Article  ADS  Google Scholar 

  48. Jacobs, K., Tombesi, P., Colett, M. J. & Walls, D. F. Quantum-nondemolition measurement of photon number using radiation pressure. Phys. Rev. A 49, 1961–1966 (1994).

    Article  ADS  Google Scholar 

  49. Pinard, M., Fabre, C. & Heidmann, A. Quantum-nondemolition measurement of light by a piezoelectric crystal. Phys. Rev. A 51, 2443–2449 (1995).

    Article  ADS  Google Scholar 

  50. Schiliesser, A., Riviere, R., Anetsberger, G., Arcizet, O., Kippenberg, T.J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Heidmann and J. G. E. Harris for providing us with their data for illustration in Fig. 3.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Favero, I., Karrai, K. Optomechanics of deformable optical cavities. Nature Photon 3, 201–205 (2009). https://doi.org/10.1038/nphoton.2009.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing