Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A highly efficient single-photon source based on a quantum dot in a photonic nanowire


The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication, optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2,3,4 or a semiconductor quantum dot5,6,7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9,10,11,12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire with carefully tailored ends13. Under optical pumping, we demonstrate a record source efficiency of 0.72, combined with pure single-photon emission. This non-resonant approach also provides broadband spontaneous emission control, thus offering appealing novel opportunities for the development of single-photon sources based on spectrally broad emitters, wavelength-tunable sources or efficient sources of entangled photon pairs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Single-photon source geometry.
Figure 2: Single-photon emission by a single QD in a photonic nanowire.
Figure 3: Efficiency of single-photon sources.


  1. 1

    Shields, A. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Brouri, R., Beveratos, A., Poizat, J. P. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

    ADS  Article  Google Scholar 

  3. 3

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    ADS  Article  Google Scholar 

  4. 4

    Rabeau, J. R. et al. Fabrication of single nickel–nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 86, 131926 (2005).

    ADS  Article  Google Scholar 

  5. 5

    Gérard, J. M. & Gayral, B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089–2095 (1999).

    ADS  Article  Google Scholar 

  6. 6

    Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    ADS  Article  Google Scholar 

  7. 7

    Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    ADS  Article  Google Scholar 

  8. 8

    Barnes, W. L. et al. Solid-state single photon sources: light collection strategies. Eur. Phys. J. D 18, 197–210 (2002).

    ADS  Google Scholar 

  9. 9

    Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    ADS  Article  Google Scholar 

  10. 10

    Santori, C., Fattal, D., Vuković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    ADS  Article  Google Scholar 

  11. 11

    Strauf, S. et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Chang, W. H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Friedler, I. et al. Solid-state single photon sources: the nanowire antenna. Opt. Express 17, 2095–2110 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    ADS  Article  Google Scholar 

  15. 15

    Moreau, E. et al. A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar. Physica E 13, 418–422 (2002).

    ADS  Article  Google Scholar 

  16. 16

    Vahala, K. J. Optical microcavities. Nature 423, 839–846 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Zhang, J. P. et al. Photonic-wire laser. Phys. Rev. Lett. 75, 2678–2681 (1995).

    ADS  Article  Google Scholar 

  19. 19

    Lecamp, G., Lalanne, P. & Hugonin, J. P. Very large spontaneous-emission beta factors in photonic-crystal waveguides. Phys. Rev. Lett. 99, 023902 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Lund-Hansen, T. et al. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 101, 113903 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Jun, Y. C., Briggs, R. M., Atwater, H. A. & Brongersma, M. L. Broadband enhancement of light emission in silicon slot waveguides. Opt. Express 17, 7479–7490 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Borgström, M. T., Zwiller, V., Müller, E. & Imamoǧlu, A. Optically bright quantum dots in single nanowires. Nano Lett. 5, 1439–1443 (2005).

    ADS  Article  Google Scholar 

  24. 24

    Maslov, A. V. & Ning, C. Z. Far-field emission of a semiconductor nanowire laser. Opt. Lett. 29, 572–574 (2004).

    ADS  Article  Google Scholar 

  25. 25

    Gregersen, N., Nielsen, T. R., Claudon, J., Gérard, J. M. & Mørk, J. Controlling the emission profile of a nanowire with a conical taper. Opt. Lett. 33, 1693–1695 (2008).

    ADS  Article  Google Scholar 

  26. 26

    Friedler, I. et al. Efficient photonic mirrors for semiconductor nanowires. Opt. Lett. 33, 2635–2637 (2008).

    ADS  Article  Google Scholar 

  27. 27

    Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    ADS  Article  Google Scholar 

  28. 28

    Suffczynski, J. et al. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys. Rev. Lett. 103, 027401 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Winger, M. et al. Explanation of photon correlation in the far-off-resonance optical emission from a quantum-dot-cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Sanaka, K., Pawlis, A., Ladd, T. D., Lischka, K. & Yamamoto, Y. Indistinguishable photons from independent semiconductor nanostructures. Phys. Rev. Lett. 103, 053601 (2009).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge the pioneering experimental work of R. Hahner and Y.-R. Nowicki-Bringuier, as well as stimulating discussion with I. Friedler, B. Gayral, J.-P. Hugonin, G. Lecamp, J. Mørk and T.R. Nielsen. The work was supported financially by IST-FET European project QPhoton (J.C., J.M.G. and N.G.), ‘Nanosciences aux limites de la Nanoélectronique’ Fundation (J.C. and N.S.M.), Danish Research Council for Technology and Production (N.G.) and NanoEPR project of the 2006 NanoSci-ERA European programm (C.S. and P.L.). Sample fabrication was carried out in the ‘Plateforme technologique amont’ and CEA LETI MINATEC/DOPT clean rooms.

Author information




J.C., N.S.M. and M.B. fabricated the sample. J.B. and P.J. conducted the optical characterizations. N.G., C.S. and P.L. provided theoretical modelling. J.M.G. supervised the project. J.C, J.B. and J.M.G. wrote the paper. All authors commented on the results and the manuscript.

Corresponding authors

Correspondence to Julien Claudon or Joël Bleuse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Claudon, J., Bleuse, J., Malik, N. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon 4, 174–177 (2010).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing