Quasi-periodic distributed feedback laser

Abstract

Although lasers have found numerous applications, their design is often still based on the concept of a gain medium within a mirror cavity. Exceptions to this are distributed feedback lasers1, in which feedback develops along a periodic structure, or random lasers, which do not require any form of cavity2. Random lasers have very rich emission spectra, but are difficult to control. Distributed feedback devices, conversely, have the same limited design possibilities of regular lasers. We show, by making use of a quasi-crystalline structure in an electrically pumped device, that several advantages of a random laser can be combined with the predictability of a distributed feedback resonator. We have constructed a terahertz quantum cascade laser based on a Fibonacci distributed feedback sequence, and show that engineering of the self-similar spectrum of the grating allows features beyond those possible with traditional periodic resonators, such as directional output independent of the emission frequency and multicolour operation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Periodic versus quasi-periodic gratings.
Figure 2: Emission spectra from devices with different grating periods and duty cycles.
Figure 3: Far-field pattern.
Figure 4: Light–current characteristics.
Figure 5: Two-colour DFB laser.

References

  1. 1

    Morthier, G. & Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes (Artech House, 1997).

    Google Scholar 

  2. 2

    Wiersma, D. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Fujiwara, T. & Ogawa, T. Quasicrystals (Springer-Verlag, 1990).

    Google Scholar 

  4. 4

    Kohmoto M., Sutherland B. & Iguchi, K. Localization of optics: quasiperiodic media. Phys. Rev. Lett. 58, 2436–2438 (1987).

    ADS  Article  Google Scholar 

  5. 5

    Gellermann, W., Kohmoto, M., Sutherland, B. & Taylor, P.C. Localization of light waves in Fibonacci dielectric multilayers. Phys. Rev. Lett. 72, 633–636 (1994).

    ADS  Article  Google Scholar 

  6. 6

    Hattori, T., Tsurumachi, N., Kawato, S. & Nakatsuka, H. Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B 50, 4220–4223 (1994).

    ADS  Article  Google Scholar 

  7. 7

    Dal Negro, L. et al. Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 90, 055501 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005).

    ADS  Article  Google Scholar 

  9. 9

    Ledermann, A. et al. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Mater. 5, 942–945 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Matsui, T., Agrawal, A., Nahata, A. & Vardeny, Z. V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446, 517–521 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Gumbs, G. & Ali, M. K. Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices. Phys. Rev. Lett. 60, 1081–1084 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Notomi, M., Suzuki, H., Tamamura, T. & Edagawa, K. Penrose-lattice photonic quasicrystal laser. Phys. Rev. Lett. 92, 123906 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Nozaki, K. & Baba, T. Quasiperiodic photonic crystal microcavity lasers. Appl. Phys. Lett. 84, 4875–4877 (2004)

    ADS  Article  Google Scholar 

  14. 14

    Köhler, R. et al. Terahertz semiconductor–heterostructure laser. Nature 417, 156–159 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Schubert, M. & Rana, F. Analysis of terahertz surface emitting quantum-cascade lasers. IEEE J. Quantum Electron. 42, 257–265 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Mahler, L. et al. Finite size effects in surface emitting terahertz quantum cascade lasers. Opt. Express 17, 6703–6709 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal–metal waveguides. Opt. Express 15, 113–128 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Belkin, M. A. et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nature Photon. 1, 288–292 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Tredicucci, A. et al. A multiwavelength semiconductor laser. Nature 396, 350–353 (1998).

    ADS  Article  Google Scholar 

  21. 21

    Norton, A. & de Sterke, C. Aperiodic 1-dimensional structures for quasi-phase matching. Opt. Express 12, 841–846 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Mahler, L. et al. Vertically emitting microdisk lasers. Nature Photon. 3, 46–49 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Witzigmann for useful discussions. This work was supported in part by the European Commission through the Research and Training Network ‘Physics of Intersubband Semiconductor Emitters’ and the integrated project ‘Teranova’. The authors also acknowledge support from the Italian Ministry of Research through the project ‘National Laboratory for Nanotechnology applied to Genomics and Post-Genomics’.

Author information

Affiliations

Authors

Contributions

L.M, A.T. and D.W. conceived the experiment. L.M. fabricated the devices and carried out measurements and simulations. C.W. performed part of the processing and H.E.B grew the semiconductor heterostructure. All authors discussed the results and implications and contributed to the manuscript at various stages.

Corresponding author

Correspondence to Alessandro Tredicucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahler, L., Tredicucci, A., Beltram, F. et al. Quasi-periodic distributed feedback laser. Nature Photon 4, 165–169 (2010). https://doi.org/10.1038/nphoton.2009.285

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing