Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonics beyond the diffraction limit

Abstract

Recent years have seen a rapid expansion of research into nanophotonics based on surface plasmon–polaritons. These electromagnetic waves propagate along metal–dielectric interfaces and can be guided by metallic nanostructures beyond the diffraction limit. This remarkable capability has unique prospects for the design of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and sensors. This Review summarizes the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength plasmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light. Potential future developments and applications of nanophotonic devices and circuits are also discussed, such as in optical signals processing, nanoscale optical devices and near-field microscopy with nanoscale resolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Typical field distributions of guided strongly localized modes in various subwavelength plasmonic waveguides.
Figure 2: Experimental structures for achieving plasmon nanofocusing.
Figure 3: Plasmon guiding around sharp bends.
Figure 4: Plasmonic waveguide-ring resonator.
Figure 5: Generation of optical plasmons using a quantum dot placed near a silver nanowire.
Figure 6: Electrical detection of plasmons.
Figure B1: Guided modes: dielectric fibres versus metal nanowires.

References

  1. Born, M. & Wolf, E. Principles of Optics 7th edn, Ch. 8 (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  2. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Ch. 2 (Springer, 1988).

    Book  Google Scholar 

  3. Maier, S. A. & Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

    Article  ADS  Google Scholar 

  4. Barnes, W. L. Surface plasmon–polariton length scales: A route to sub-wavelength optics. J. Opt. A 8, S87–S93 (2006).

    Article  ADS  Google Scholar 

  5. Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 61, 44–50 (May 2008).

    Article  ADS  Google Scholar 

  6. Liebsch, A. Screening properties of a metal surface at low frequencies and finite wave vectors. Phys. Rev. Lett. 54, 67–70 (1985).

    Article  ADS  Google Scholar 

  7. Larkin, I. A., Stockman, M. I., Achermann, M. & Klimov, V. I. Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory. Phys. Rev B 69, 121403 (2004).

    Article  ADS  Google Scholar 

  8. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

    Article  ADS  Google Scholar 

  9. Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997).

    Article  ADS  Google Scholar 

  10. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

    Article  ADS  Google Scholar 

  11. Burke, J. J., Stegeman, G. I. & Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev B 33, 5186–5201 (1986).

    Article  ADS  Google Scholar 

  12. Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    Article  ADS  Google Scholar 

  13. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  ADS  Google Scholar 

  14. Onuki, T. et al. Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides. J. Microsc. 210, 284–287 (2003).

    Article  MathSciNet  Google Scholar 

  15. Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev. B 63, 125417 (2001).[AU: OK?].

    Article  ADS  Google Scholar 

  16. Krenn, J. R. et al. Non-diffraction-limited light transport by gold nanowires. Europhys Lett. 60, 663–669 (2002).

    Article  ADS  Google Scholar 

  17. Zia, R., Schuller, J. A. & Brongersma, M. L. Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys. Rev. B 74, 165415 (2006).

    Article  ADS  Google Scholar 

  18. Verhagen, E., Polman, A. & Kuipers, L. K. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008).

    Article  ADS  Google Scholar 

  19. Berini, P. Figures of merit for surface plasmon waveguides. Opt. Express 14, 13030–13042 (2006).

    Article  ADS  Google Scholar 

  20. Tanaka, K. & Tanaka, M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82, 1158–1160 (2003).

    Article  ADS  Google Scholar 

  21. Wang, B. & Wang, G. P. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt. Lett. 29, 1992–1994 (2004).

    Article  ADS  Google Scholar 

  22. Tanaka, K., Tanaka, M. & Sugiyama, T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express 13, 256–266 (2005).

    Article  ADS  Google Scholar 

  23. Liu, L., Han, Z. & He, S. Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005).

    Article  ADS  Google Scholar 

  24. Veronis, G. & Fan, S. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005).

    Article  ADS  Google Scholar 

  25. Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

    Article  ADS  Google Scholar 

  26. Pile, D. F. P., Gramotnev, D. K., Oulton, R. F. & Zhang, X. On long-range plasmonic modes in metallic gaps. Opt. Express 15, 13669–13674 (2007).

    Article  ADS  Google Scholar 

  27. Boardman, A. D., Aers, G. C. & Teshima, R. Retarded edge modes of a parabolic wedge. Phys. Rev. B 24, 5703–5712 (1981).

    MathSciNet  Google Scholar 

  28. Pile, D. F. P. et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 061106 (2005).

    Article  ADS  Google Scholar 

  29. Boltasseva, A. et al. Triangular metal wedges for subwavelength plasmon–polariton guiding at telecom wavelengths. Opt. Express 16, 5252–5260 (2008).

    Article  ADS  Google Scholar 

  30. Moreno, E., Garcia-Vidal, F. J., Rodrigo, S. G., Martin-Moreno, L. & Bozhevolnyi, S. I. Channel plasmon-polaritons: Modal shape, dispersion, and losses. Opt. Lett. 31, 3447–3449 (2006).

    Article  ADS  Google Scholar 

  31. Yan, M. & Qiu, M. Guided plasmon polariton at 2D metal corners. J. Opt. Soc. Am. B 24, 2333–2342 (2007).

    Article  ADS  Google Scholar 

  32. Novikov, I. V. & Maradudin, A. A. Channel polaritons. Phys. Rev. B 66, 035403 (2002).

    Article  ADS  Google Scholar 

  33. Pile, D. F. P. & Gramotnev, D. K. Channel plasmon–polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069–1071 (2004).

    Article  ADS  Google Scholar 

  34. Gramotnev, D. K. & Pile, D. F. P. Single-mode subwavelength waveguide with channel plasmon–polaritons in triangular grooves on a metal surface. Appl. Phys. Lett. 85, 6323–6325 (2004).

    Article  ADS  Google Scholar 

  35. Bozhevolyni, S. I., Volkov, V. S., Devaux, E. & Ebbesen, T. W. Channel plasmon–polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005).

    Article  ADS  Google Scholar 

  36. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    Article  Google Scholar 

  37. Moreno, E., Rodrigo, S. G., Bozhevolnyi, S. I., Martín-Moreno, L. & García-Vidal, F. J. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100, 023901 (2008).

    Article  ADS  Google Scholar 

  38. Gramotnev, D. K. Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 98, 104302 (2005).

    Article  ADS  Google Scholar 

  39. Bozhevolnyi, S. I. & Nerkararyan, K. V. Analytic description of channel plasmon polaritons. Opt. Lett. 34, 2039–2041 (2009).

    Article  ADS  Google Scholar 

  40. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  41. Volkov, V. S., Bozhevolnyi, S. I., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett. 7, 880–884 (2007).

    Article  ADS  Google Scholar 

  42. Veronis, G. & Fan, S. Crosstalk between three-dimensional plasmonic slot waveguides. Opt. Express 16, 2129–2140 (2008).

    Article  ADS  Google Scholar 

  43. Gramotnev, D. K., Vernon, K. C. & Pile, D. F. P. Directional coupler using slot plasmonic waveguide. Appl. Phys. B 93, 99–106 (2008).

    Article  ADS  Google Scholar 

  44. Conway, J. A., Sahni, S. & Szkopek, T. Plasmonic interconnects versus conventional interconnects: A comparison of latency, crosstalk and energy costs. Opt. Express 15, 4474–4484 (2007).

    Article  ADS  Google Scholar 

  45. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  ADS  Google Scholar 

  46. Babadjanyan, A. J., Margaryan, N. L. & Nerkararyan, K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3788 (2000).

    Article  ADS  Google Scholar 

  47. Vernon, K. C., Gramotnev, D. K. & Pile, D. F. P. Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J. Appl. Phys. 101, 104312 (2007).

    Article  ADS  Google Scholar 

  48. Durach, M., Rusina, A., Stockman, M. I. & Nelson, K. Toward full spatiotemporal control on the nanoscale. Nano Lett. 7, 3145–3149 (2007).

    Article  ADS  Google Scholar 

  49. Pile, D. F. P. & Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006).

    Article  ADS  Google Scholar 

  50. Ginzburg, P., Arbel, D. & Orenstein, M. Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006).

    Article  ADS  Google Scholar 

  51. Gramotnev, D. K., Pile, D. F. P., Vogel, M. W. & Zhang, X. Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys. Rev. B 75, 035431 (2007).

    Article  ADS  Google Scholar 

  52. Issa, N. A. & Guckenberger, R. Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31–37 (2007).

    Article  Google Scholar 

  53. Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008).

    Article  ADS  Google Scholar 

  54. Kurihara, K. et al. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach. J. Phys. A 40, 12479–12503 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Kurihara, K., Yamamoto, K., Takahara, J. & Otomo, A. Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables. J. Phys. A 41, 295401–295500 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  56. Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).

    Article  ADS  Google Scholar 

  57. Choi, H., Pile, D. F., Nam, S., Bartal, G. & Zhang, X. Compressing surface plasmons for nanoscale optical focusing. Opt. Express 17, 7519–7524 (2009).

    Article  ADS  Google Scholar 

  58. Volkov, V. S. et al. Nanofocusing with channel plasmon polaritons. Nano Lett. 9, 1278–1282 (2009).

    Article  ADS  Google Scholar 

  59. Plasmonic Nanoguides and Circuits, Bozhevolnyi S. I., ed. (Pan Stanford, 2009).

  60. Chen, L., Shakya, J. & Lipson, M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).

    Article  ADS  Google Scholar 

  61. Verhagen, E., Spasenović, M., Polman, A. & Kuipers, L. K. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009).

    Article  ADS  Google Scholar 

  62. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000).

    Article  Google Scholar 

  63. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Article  ADS  Google Scholar 

  64. Sanders, A. W. et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).

    Article  ADS  Google Scholar 

  65. Wang, K. & Mittlemann, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

    Article  ADS  Google Scholar 

  66. Knight, M. W. et al. Nanoparticle-meditated coupling of light into a nanowire. Nano Lett. 7, 2346–2350 (2007).

    Article  ADS  Google Scholar 

  67. Pyayt, A. L., Wiley, B., Xia, Y., Chen, A. & Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotech. 3, 660–665 (2008).

    Article  ADS  Google Scholar 

  68. Veronis, G. & Fan, S. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal–dielectric–metal plasmonic waveguides. Opt. Express 15, 1211–1221 (2007).

    Article  ADS  Google Scholar 

  69. Pile, D. F. P. & Gramotnev, D. K. Plasmonic subwavelength waveguides: Next to zero losses at sharp bends. Opt. Lett. 30, 1186–1188 (2005).

    Article  ADS  Google Scholar 

  70. Pile, D. F. P. & Gramotnev, D. K. Nanoscale Fabry–Pérot interferometer using channel plasmon-polaritons in triangular metallic grooves. Appl. Phys. Lett. 86, 161101 (2005).

    Article  ADS  Google Scholar 

  71. Volkov, V. S., Bozhevolnyi, S. I., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. in Plasmonic Nanoguides and Circuits (ed. Bozhevolnyi, S. I) 317–352 (Pan Stanford, 2009).

    Google Scholar 

  72. Søndergaard, T. & Bozhevolnyi, S. Slow-plasmon resonant nanostructures: Scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).

    Article  ADS  Google Scholar 

  73. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

    Article  ADS  Google Scholar 

  74. Novotny, L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

    Article  ADS  Google Scholar 

  75. Bozhevolnyi, S. I. & Søndergaard, T. General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators. Opt. Express 15, 10869–10877 (2007).

    Article  ADS  Google Scholar 

  76. Lim, J. K., Imura, K., Nagahara, T., Kim, S. K. & Okamoto, H. Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy. Chem. Phys. Lett. 412, 41–45 (2005).

    Article  ADS  Google Scholar 

  77. Neubrech, F. et al. Resonances of individual metal nanowires in the infrared. Appl. Phys. Lett. 89, 253104 (2006).

    Article  ADS  Google Scholar 

  78. Allione, M., Temnov, V. V., Fedutik, Y., Woggon, U. & Artemyev, M. V. Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett. 8, 31–35 (2008).

    Article  ADS  Google Scholar 

  79. Miyazaki, H. T. & Kurokawa, Y. Controlled plasmon resonance in closed metal/insulator/metal nanocavities. Appl. Phys. Lett. 89, 211126 (2006).

    Article  ADS  Google Scholar 

  80. Søndergaard, T., Beermann, J., Boltasseva, A. & Bozhevolnyi, S. I. Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration. Phys. Rev. B 77, 115420 (2008).

    Article  ADS  Google Scholar 

  81. Barnard, E. S., White, J. S., Chandran, A. & Brongersma, M. L. Spectral properties of plasmonic resonator antennas. Opt. Express 16, 16529–16537 (2008).

    Article  ADS  Google Scholar 

  82. Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Article  Google Scholar 

  83. Bozhevolnyi, S. I. in Nanophotonics with Surface Plasmons (eds Shalaev, V. M. & Kawata, S.) 1–34 (Elsevier, 2007).

    Google Scholar 

  84. Sincerbox, G. T. & Gordon II, J. C. Small fast large-aperture light modulator using attenuated total reflection. Appl. Opt. 20, 1491–1494 (1981).

    Article  ADS  Google Scholar 

  85. Solgaard, O., Ho., F., Thackara, J. I. & Bloom, D. M. High frequency attenuated total internal reflection light modulator. Appl. Phys. Lett. 61, 2500–2502 (1992).

    Article  ADS  Google Scholar 

  86. Dicken, M. J. et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).

    Article  ADS  Google Scholar 

  87. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: A metal-oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    Article  ADS  Google Scholar 

  88. MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    Article  ADS  Google Scholar 

  89. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  90. Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

    Article  ADS  Google Scholar 

  91. Sudarkin, A. N. & Demkovich, P. A. Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov. Phys. Tech. Phys. 34, 764–766 (1989).

    Google Scholar 

  92. Sirtori, C. et al. Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998).

    Article  ADS  Google Scholar 

  93. Tredicucci, T. et al. Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000).

    Article  ADS  Google Scholar 

  94. Seidel, J., Grafström, S. & Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).

    Article  ADS  Google Scholar 

  95. Noginov, M. A. et al. Compensation of loss in propagating surface plasmon polaritons by gain in adjacent dielectric medium. Opt. Express 16, 1385–1392 (2008).

    Article  ADS  Google Scholar 

  96. Ambati, M. et al. Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 8, 3998–4001 (2008).

    Article  ADS  Google Scholar 

  97. Grandidier, J. et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 9, 2935–2939 (2009).

    Article  ADS  Google Scholar 

  98. Noginov, M. A. et al. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008).

    Article  ADS  Google Scholar 

  99. van Wijngaarden, J. T. et al. Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy. Appl. Phys. Lett. 88, 221111 (2006).

    Article  ADS  Google Scholar 

  100. Bashevoy, M. V., Jonsson, F., Krasavin, A. V. & Zheludev, N. I. Generation of traveling surface plasmon waves by free-electron impact. Nano Lett. 6, 1113–1115 (2006).

    Article  ADS  Google Scholar 

  101. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

    Article  ADS  Google Scholar 

  102. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  103. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

    Article  ADS  Google Scholar 

  104. Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

    Article  ADS  Google Scholar 

  105. Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U. & Artemyev, M. V. Excitation–plasmon–photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

    Article  ADS  Google Scholar 

  106. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  107. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  108. Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).

    Article  ADS  Google Scholar 

  109. Neutens, P. et al. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon. 3, 283–286 (2009).

    Article  ADS  Google Scholar 

  110. Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).

    Article  ADS  Google Scholar 

  111. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

    Article  ADS  Google Scholar 

  112. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  113. Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

    Article  ADS  Google Scholar 

  114. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  115. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  116. Volkov, V. S., Bozhevolnyi, S. I., Devaux, E. & Ebbesen, T. W. Bend loss for channel plasmon polaritons. Appl. Phys. Lett. 89, 143108 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Danish Agency for Science, Technology and Innovation grant No. 274-07-0258 (SIB), and by the Australian Research Council, Australian Federal Police and National Institute of Forensic Science (ARC Linkage Grant No: LP0882614).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitri K. Gramotnev or Sergey I. Bozhevolnyi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gramotnev, D., Bozhevolnyi, S. Plasmonics beyond the diffraction limit. Nature Photon 4, 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing