Review Article | Published:

Plasmonics beyond the diffraction limit

Nature Photonics volume 4, pages 8391 (2010) | Download Citation

Abstract

Recent years have seen a rapid expansion of research into nanophotonics based on surface plasmon–polaritons. These electromagnetic waves propagate along metal–dielectric interfaces and can be guided by metallic nanostructures beyond the diffraction limit. This remarkable capability has unique prospects for the design of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and sensors. This Review summarizes the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength plasmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light. Potential future developments and applications of nanophotonic devices and circuits are also discussed, such as in optical signals processing, nanoscale optical devices and near-field microscopy with nanoscale resolution.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Principles of Optics 7th edn, Ch. 8 (Cambridge Univ. Press, 1999).

  2. 2.

    Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Ch. 2 (Springer, 1988).

  3. 3.

    & Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

  4. 4.

    Surface plasmon–polariton length scales: A route to sub-wavelength optics. J. Opt. A 8, S87–S93 (2006).

  5. 5.

    , & Surface-plasmon circuitry. Phys. Today 61, 44–50 (May 2008).

  6. 6.

    Screening properties of a metal surface at low frequencies and finite wave vectors. Phys. Rev. Lett. 54, 67–70 (1985).

  7. 7.

    , , & Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory. Phys. Rev B 69, 121403 (2004).

  8. 8.

    , , , & Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

  9. 9.

    Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997).

  10. 10.

    Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

  11. 11.

    , & Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev B 33, 5186–5201 (1986).

  12. 12.

    , , & Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

  13. 13.

    et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

  14. 14.

    et al. Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides. J. Microsc. 210, 284–287 (2003).

  15. 15.

    Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys Rev. B 63, 125417 (2001).[AU: OK?].

  16. 16.

    et al. Non-diffraction-limited light transport by gold nanowires. Europhys Lett. 60, 663–669 (2002).

  17. 17.

    , & Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys. Rev. B 74, 165415 (2006).

  18. 18.

    , & Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008).

  19. 19.

    Figures of merit for surface plasmon waveguides. Opt. Express 14, 13030–13042 (2006).

  20. 20.

    & Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl. Phys. Lett. 82, 1158–1160 (2003).

  21. 21.

    & Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt. Lett. 29, 1992–1994 (2004).

  22. 22.

    , & Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express 13, 256–266 (2005).

  23. 23.

    , & Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005).

  24. 24.

    & Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005).

  25. 25.

    et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

  26. 26.

    , , & On long-range plasmonic modes in metallic gaps. Opt. Express 15, 13669–13674 (2007).

  27. 27.

    , & Retarded edge modes of a parabolic wedge. Phys. Rev. B 24, 5703–5712 (1981).

  28. 28.

    et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 061106 (2005).

  29. 29.

    et al. Triangular metal wedges for subwavelength plasmon–polariton guiding at telecom wavelengths. Opt. Express 16, 5252–5260 (2008).

  30. 30.

    , , , & Channel plasmon-polaritons: Modal shape, dispersion, and losses. Opt. Lett. 31, 3447–3449 (2006).

  31. 31.

    & Guided plasmon polariton at 2D metal corners. J. Opt. Soc. Am. B 24, 2333–2342 (2007).

  32. 32.

    & Channel polaritons. Phys. Rev. B 66, 035403 (2002).

  33. 33.

    & Channel plasmon–polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069–1071 (2004).

  34. 34.

    & Single-mode subwavelength waveguide with channel plasmon–polaritons in triangular grooves on a metal surface. Appl. Phys. Lett. 85, 6323–6325 (2004).

  35. 35.

    , , & Channel plasmon–polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005).

  36. 36.

    , , , & A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

  37. 37.

    , , , & Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100, 023901 (2008).

  38. 38.

    Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach. J. Appl. Phys. 98, 104302 (2005).

  39. 39.

    & Analytic description of channel plasmon polaritons. Opt. Lett. 34, 2039–2041 (2009).

  40. 40.

    , , , & Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

  41. 41.

    , , , & Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett. 7, 880–884 (2007).

  42. 42.

    & Crosstalk between three-dimensional plasmonic slot waveguides. Opt. Express 16, 2129–2140 (2008).

  43. 43.

    , & Directional coupler using slot plasmonic waveguide. Appl. Phys. B 93, 99–106 (2008).

  44. 44.

    , & Plasmonic interconnects versus conventional interconnects: A comparison of latency, crosstalk and energy costs. Opt. Express 15, 4474–4484 (2007).

  45. 45.

    Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

  46. 46.

    , & Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3788 (2000).

  47. 47.

    , & Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J. Appl. Phys. 101, 104312 (2007).

  48. 48.

    , , & Toward full spatiotemporal control on the nanoscale. Nano Lett. 7, 3145–3149 (2007).

  49. 49.

    & Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006).

  50. 50.

    , & Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006).

  51. 51.

    , , & Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys. Rev. B 75, 035431 (2007).

  52. 52.

    & Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31–37 (2007).

  53. 53.

    , & Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008).

  54. 54.

    et al. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach. J. Phys. A 40, 12479–12503 (2007).

  55. 55.

    , , & Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables. J. Phys. A 41, 295401–295500 (2008).

  56. 56.

    et al. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).

  57. 57.

    , , , & Compressing surface plasmons for nanoscale optical focusing. Opt. Express 17, 7519–7524 (2009).

  58. 58.

    et al. Nanofocusing with channel plasmon polaritons. Nano Lett. 9, 1278–1282 (2009).

  59. 59.

    Plasmonic Nanoguides and Circuits, Bozhevolnyi S. I., ed. (Pan Stanford, 2009).

  60. 60.

    , & Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).

  61. 61.

    , Spasenović, M., & Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009).

  62. 62.

    & Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000).

  63. 63.

    et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

  64. 64.

    et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).

  65. 65.

    & Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).

  66. 66.

    et al. Nanoparticle-meditated coupling of light into a nanowire. Nano Lett. 7, 2346–2350 (2007).

  67. 67.

    , , , & Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotech. 3, 660–665 (2008).

  68. 68.

    & Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal–dielectric–metal plasmonic waveguides. Opt. Express 15, 1211–1221 (2007).

  69. 69.

    & Plasmonic subwavelength waveguides: Next to zero losses at sharp bends. Opt. Lett. 30, 1186–1188 (2005).

  70. 70.

    & Nanoscale Fabry–Pérot interferometer using channel plasmon-polaritons in triangular metallic grooves. Appl. Phys. Lett. 86, 161101 (2005).

  71. 71.

    , , , & in Plasmonic Nanoguides and Circuits (ed. Bozhevolnyi, S. I) 317–352 (Pan Stanford, 2009).

  72. 72.

    & Slow-plasmon resonant nanostructures: Scattering and field enhancements. Phys. Rev. B 75, 073402 (2007).

  73. 73.

    & Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

  74. 74.

    Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007).

  75. 75.

    & General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators. Opt. Express 15, 10869–10877 (2007).

  76. 76.

    , , , & Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy. Chem. Phys. Lett. 412, 41–45 (2005).

  77. 77.

    et al. Resonances of individual metal nanowires in the infrared. Appl. Phys. Lett. 89, 253104 (2006).

  78. 78.

    , , , & Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities. Nano Lett. 8, 31–35 (2008).

  79. 79.

    & Controlled plasmon resonance in closed metal/insulator/metal nanocavities. Appl. Phys. Lett. 89, 211126 (2006).

  80. 80.

    , , & Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration. Phys. Rev. B 77, 115420 (2008).

  81. 81.

    , , & Spectral properties of plasmonic resonator antennas. Opt. Express 16, 16529–16537 (2008).

  82. 82.

    et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

  83. 83.

    in Nanophotonics with Surface Plasmons (eds Shalaev, V. M. & Kawata, S.) 1–34 (Elsevier, 2007).

  84. 84.

    & Small fast large-aperture light modulator using attenuated total reflection. Appl. Opt. 20, 1491–1494 (1981).

  85. 85.

    , , & High frequency attenuated total internal reflection light modulator. Appl. Phys. Lett. 61, 2500–2502 (1992).

  86. 86.

    et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).

  87. 87.

    , , & PlasMOStor: A metal-oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

  88. 88.

    , , & Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

  89. 89.

    , & All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

  90. 90.

    , , & A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

  91. 91.

    & Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov. Phys. Tech. Phys. 34, 764–766 (1989).

  92. 92.

    et al. Long-wavelength (λ ≈ 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998).

  93. 93.

    et al. Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000).

  94. 94.

    , & Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).

  95. 95.

    et al. Compensation of loss in propagating surface plasmon polaritons by gain in adjacent dielectric medium. Opt. Express 16, 1385–1392 (2008).

  96. 96.

    et al. Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 8, 3998–4001 (2008).

  97. 97.

    et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 9, 2935–2939 (2009).

  98. 98.

    et al. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008).

  99. 99.

    et al. Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy. Appl. Phys. Lett. 88, 221111 (2006).

  100. 100.

    , , & Generation of traveling surface plasmon waves by free-electron impact. Nano Lett. 6, 1113–1115 (2006).

  101. 101.

    et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

  102. 102.

    , , & Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

  103. 103.

    , , & Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

  104. 104.

    , , & Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

  105. 105.

    , , , & Excitation–plasmon–photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

  106. 106.

    et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

  107. 107.

    , , & A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

  108. 108.

    et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).

  109. 109.

    et al. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon. 3, 283–286 (2009).

  110. 110.

    et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Phys. 5, 475–479 (2009).

  111. 111.

    , & Nano-optics from sensing to waveguiding. Nature Photon. 1, 641–648 (2007).

  112. 112.

    & Light in tiny holes. Nature 445, 39–46 (2007).

  113. 113.

    et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).

  114. 114.

    et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

  115. 115.

    et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

  116. 116.

    , , & Bend loss for channel plasmon polaritons. Appl. Phys. Lett. 89, 143108 (2006).

Download references

Acknowledgements

This work was partially supported by the Danish Agency for Science, Technology and Innovation grant No. 274-07-0258 (SIB), and by the Australian Research Council, Australian Federal Police and National Institute of Forensic Science (ARC Linkage Grant No: LP0882614).

Author information

Affiliations

  1. Nanophotonics, GPO Box 786, Brisbane, Queensland 4035, Australia.

    • Dmitri K. Gramotnev
  2. Institute of Sensors, Signals and Electrotechnics (SENSE), University of Southern Denmark, Niels Bohrs Allé 1, DK-5230 Odense M, Denmark.

    • Sergey I. Bozhevolnyi

Authors

  1. Search for Dmitri K. Gramotnev in:

  2. Search for Sergey I. Bozhevolnyi in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Dmitri K. Gramotnev or Sergey I. Bozhevolnyi.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2009.282

Further reading