Article | Published:

An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

Nature Photonics volume 4, pages 182187 (2010) | Download Citation

Abstract

Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising platform to accommodate such photonic circuits in large-scale configurations. Through heterogeneous integration of InP membranes onto silicon-on-insulator, a single microdisk laser with a diameter of 7.5 µm, coupled to a silicon-on-insulator wire waveguide, is demonstrated here as an all-optical flip-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also the only electrically pumped, all-optical flip-flop on silicon built upon complementary metal-oxide semiconductor technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Role of optics and electronics in high-capacity routers. IEEE J. Lightwave Technol. 24, 4655–4673 (2006).

  2. 2.

    , & Scaling all-optical packet routers: how much buffering is required? J. Opt. Netw. 7, 936–946 (2008).

  3. 3.

    All-optical signal processing using ultrafast polarization bistable VCSELs. 2002 International Topical Meeting on Photonics in Switching 72–74, paper TuB3 (2002).

  4. 4.

    et al. Characterization of all-optical regeneration potentials of a bistable semiconductor ring laser. IEEE J. Lightwave Technol. 27, 4233–4240 (2009).

  5. 5.

    , & Logic gates and optical switching with vertical-cavity surface-emitting lasers. Phys. Rev. A 55, 690–700 (1997).

  6. 6.

    , , , & Optical static RAM cell. IEEE Photon. Technol. Lett. 21, 73–75 (2009).

  7. 7.

    , , & Optical buffer memory using polarization-bistable vertical-cavity surface-emitting lasers. Jpn J. Appl. Phys. 45, L894–L897 (2006).

  8. 8.

    et al. Contention resolution for burst-mode traffic using integrated SOA–MZI gate arrays and self-resetting optical flip-flops. IEEE Photon. Technol. Lett. 20, 2024–2026 (2008).

  9. 9.

    , , & Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

  10. 10.

    , & Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

  11. 11.

    , , , & Synchronously loaded optical packet buffer. IEEE Photon. Technol. Lett. 20, 1757–1759 (2008).

  12. 12.

    , , & An integrated recirculating optical buffer. Opt. Express 16, 11124–11131 (2008).

  13. 13.

    et al. Photonic random access memory for 40-Gb/s 16-b burst optical packets. IEEE Photon. Technol. Lett. 16, 1185–1187 (2004).

  14. 14.

    et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).

  15. 15.

    et al. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model. IEEE J. Quantum Electron. 39, 1187–1195 (2003).

  16. 16.

    , & Dynamic switching response of semiconductor ring lasers to NRZ and RZ injection signals. IEEE Photon. Technol. Lett. 20, 785–787 (2008).

  17. 17.

    et al. Dynamic operation of all-optical flip-flop based on a monolithic semiconductor ring laser. European Conference on Optical Communication, paper We2C3 (2008).

  18. 18.

    , , , & Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers. IEEE Photon. Technol. Lett. 21, 88–90 (2009).

  19. 19.

    , , , & Modal structure, directional and wavelength jumps of integrated semiconductor ring lasers: experiment and theory. Appl. Phys. Lett. 93, 251109 (2008).

  20. 20.

    , & Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a bistable vertical-cavity surface-emitting laser. Appl. Phys. Lett. 88, 101102 (2006).

  21. 21.

    , & All-optical flip-flop operation using 1.55 µm polarization bistable VCSELs. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, paper CME5 (2008).

  22. 22.

    et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. IEEE J. Lightwave Technol. 23, 401–412 (2005).

  23. 23.

    et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–239 (2005).

  24. 24.

    & Silicon photonics. IEEE J. Lightwave Technol. 24, 4600–4615 (2006).

  25. 25.

    et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

  26. 26.

    et al. All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006).

  27. 27.

    , , , & Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt. Express 14, 8154–8159 (2006).

  28. 28.

    et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

  29. 29.

    et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

  30. 30.

    et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).

  31. 31.

    , & Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA. Electron. Lett. 36, 790–791 (2000).

  32. 32.

    Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

Download references

Acknowledgements

This work was supported by the European FP7 ICT-projects HISTORIC, WADIMOS and PhotonFAB, the Belgian Fund for Scientific Research Flanders (FWO), and the IAP-project ‘Photonics@be’. The work of K.H. and T.S. is supported by the Institute for the Promotion of Innovation through Science and Technology (IWT) under a specialization grant. The authors thank M. Verbist for taking the cross-sectional image and acknowledge assistance from S. Verstuyft during device fabrication.

Author information

Author notes

    • Liu Liu

    Present address: DTU-Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads Building 343, 2800 Kgs. Lyngby, Denmark

Affiliations

  1. Photonics Research Group, INTEC Department, Ghent University–IMEC, B-9000 Gent, Belgium

    • Liu Liu
    • , Rajesh Kumar
    • , Koen Huybrechts
    • , Thijs Spuesens
    • , Günther Roelkens
    • , Dries Van Thourhout
    • , Roel Baets
    •  & Geert Morthier
  2. COBRA Research Institute, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands

    • Erik-Jan Geluk
    •  & Tjibbe de Vries
  3. Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully, F-69134, France

    • Philippe Regreny

Authors

  1. Search for Liu Liu in:

  2. Search for Rajesh Kumar in:

  3. Search for Koen Huybrechts in:

  4. Search for Thijs Spuesens in:

  5. Search for Günther Roelkens in:

  6. Search for Erik-Jan Geluk in:

  7. Search for Tjibbe de Vries in:

  8. Search for Philippe Regreny in:

  9. Search for Dries Van Thourhout in:

  10. Search for Roel Baets in:

  11. Search for Geert Morthier in:

Contributions

G.M. conceived the idea and supervised the project. D.V.T. and R.B. provided assistance in the coordination of the project. L.L., R.K., T.S., G.R., E.G., T.d.V. and P.R. fabricated the devices. L.L., R.K. and K.H. performed the measurements. L.L. and G.M. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Geert Morthier.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.268

Further reading