Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper

Abstract

Ultrabroad-bandwidth radiofrequency pulses offer significant applications potential, such as increased data transmission rate and multipath tolerance in wireless communications. Such ultrabroad-bandwidth pulses are inherently difficult to generate with chip-based electronics due to limits in digital-to-analog converter technology and high timing jitter. Photonic means of radiofrequency waveform generation, for example, by spectral shaping and frequency–time mapping, can overcome the bandwidth limit in electronic generation. However, previous bulk optic systems for radiofrequency arbitrary waveform generation do not offer the integration advantage of electronics. Here, we report a chip-scale, fully programmable spectral shaper consisting of cascaded multiple-channel microring resonators, on a silicon photonics platform that is compatible with electronic integrated circuit technology. Using such a spectral shaper, we demonstrate the generation of burst radiofrequency waveforms with programmable time-dependent amplitude, frequency and phase profiles, for frequencies up to 60 GHz. Our demonstration suggests potential for chip-scale photonic generation of ultrabroad-bandwidth arbitrary radiofrequency waveforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic and representative results of the chip-based photonic RF waveform generation.
Figure 2: Controlling the attenuation of individual frequency components in the integrated spectral shaper.
Figure 3: Controlling the amplitudes of individual peaks in 10 GHz RF waveforms.
Figure 4: Phase and frequency control in waveforms up to 60 GHz fundamental frequencies.
Figure 5: Generation of chirped RF waveforms.

Similar content being viewed by others

References

  1. Reed, J. H. An Introduction to Ultra Wideband Communication Systems (Prentice-Hall, 2005).

  2. Win, M. Z. & Scholtz, R. A. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans. Commun. 48, 679–691 (2000).

    Article  Google Scholar 

  3. Daniels, R. C. & Heath, R. W. 60 GHz wireless communications: emerging requirements and design recommendations. Veh. Technol. Mag. 2, 41–50 (2007).

    Article  Google Scholar 

  4. Azevedo, S. & McEwan, T. E. Micropower impulse radar. Science and Technology Review, Lawrence Livermore National Laboratory 17–29 (1996).

  5. Lee, J. S., Nguyen, C. & Scullion, T. A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements. IEEE Trans. Instrum. Meas. 53, 1502–1509 (2004).

    Article  Google Scholar 

  6. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  7. McKinney, J. D., Leaird, D. E. & Weiner, A. M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett. 27, 1345–1347 (2002).

    Article  ADS  Google Scholar 

  8. Chou, J., Han, Y. & Jalali, B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photon. Technol. Lett. 15, 581–583 (2003).

    Article  ADS  Google Scholar 

  9. Lin, I. S., McKinney, J. D. & Weiner, A. M. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication. IEEE Microw. Wirel. Compon. Lett. 15, 226–228 (2005).

    Article  Google Scholar 

  10. Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J. P. Micro-ring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997).

    Article  ADS  Google Scholar 

  11. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  12. Barwicz, T. et al. Microring-resonator-based add–drop filters in SiN: fabrication and analysis. Opt. Express 12, 1437–1442 (2004).

    Article  ADS  Google Scholar 

  13. Xiao, S., Khan, M. H., Shen, H. & Qi, M. Multiple-channel silicon micro-resonator based filters for WDM applications. Opt. Express 15, 7489–7498 (2007).

    Article  ADS  Google Scholar 

  14. Agarwal, A. et al. Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. J. Lightwave Technol. 24, 77–87 (2006).

    Article  ADS  Google Scholar 

  15. Xiao, S., Khan, M. H., Shen, H. & Qi, M. Silicon-on-insulator micro-ring add–drop filters with free spectral ranges over 30 nm. J. Lightwave Technol. 26, 228–236 (2008).

    Article  ADS  Google Scholar 

  16. Miyamoto, D. et al. Waveform-controllable optical pulse generation using an optical pulse synthesizer. IEEE Photon. Technol. Lett. 18, 721–723 (2006).

    Article  ADS  Google Scholar 

  17. Takiguchi, K., Okamoto, K., Kominato, T., Takahashi, H. & Shibata, T. Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit. Electron. Lett. 40, 537–538 (2004).

    Article  Google Scholar 

  18. Wang, C. & Yao, J. Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating. IEEE Trans. Microw. Theory Tech. 56, 542–553 (2008).

    Article  ADS  Google Scholar 

  19. Li, H. H. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Reference Data 9, 561–658 (1980).

    Article  ADS  Google Scholar 

  20. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nature Photon. 1, 319–330 (2007).

    Article  ADS  Google Scholar 

  21. Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).

    Article  ADS  Google Scholar 

  22. Yao, J., Zeng, F. & Wang, Q. Photonic generation of ultrawideband signals. J. Lightwave Technol. 25, 3219–3235 (2007).

    Article  ADS  Google Scholar 

  23. Popovic, M. A. et al. Transparent wavelength switching of resonant filters. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), paper CPDA2 (Optical Society of America, 2007).

    Google Scholar 

  24. Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978).

    Article  ADS  Google Scholar 

  25. McKinney, J. D., Lin, I. S. & Weiner, A. M. Shaping the power spectrum of ultra-wideband radio-frequency signals. IEEE Trans. Microw. Theory Tech. 54, 4247–4255 (2006).

    Article  ADS  Google Scholar 

  26. Farhang, M. & Salehi, J. A. Spread-time/time-hopping UWB CDMA communication. In IEEE International Symposium on Communications and Information Technology (ISCIT), Vol. 2, 1047–1050 (2004).

    Google Scholar 

  27. Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).

    Article  ADS  Google Scholar 

  28. Xiao, S., Khan, M. H., Shen, H. & Qi, M. Compact silicon microring resonators with ultra-low propagation loss in the C band. Opt. Express 15, 14467–14475 (2007).

    Article  ADS  Google Scholar 

  29. Klauder, J. R., Price, A. C., Darlington, S. & Albersheim, W. J. The theory and design of chirp radars. Bell Syst. Tech. J. 39, 745–808 (1960).

    Article  Google Scholar 

  30. Cohen, L. Time-frequency distributions—a review. Proc. IEEE 77, 941–981 (1989).

    Article  ADS  Google Scholar 

  31. Liu, Y., Park, S.-G. & Weiner, A. M. Terahertz waveform synthesis via optical pulse shaping. IEEE J. Sel. Topics Quantum Electron. 2, 709–719 (1996).

    Article  ADS  Google Scholar 

  32. Gan, F. et al. Maximizing the thermo-optic tuning range of silicon photonic structures. In Photonics in Switching 2007, 67–68 (2007).

  33. Watts, M. R. et al. Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), paper CPDB10 (Optical Society of America, 2009).

  34. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  35. Geis, M. W., Spector, S. J., Williamson, R. C. & Lyszczarz, T. M. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).

    Article  ADS  Google Scholar 

  36. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  37. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

    Article  ADS  Google Scholar 

  38. Yamada, K. et al. Silicon wire waveguiding system: fundamental characteristics and applications. Electron. Commun. Jpn, Part 2 89, 42–55 (2006).

    Article  Google Scholar 

  39. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003).

    Article  ADS  Google Scholar 

  40. Roelkens, G. et al. High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Appl. Phys. Lett. 92, 131101 (2008).

    Article  ADS  Google Scholar 

  41. Shankar Kumar, S. et al. Highly efficient grating coupler between optical fiber and silicon photonic circuit. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD), paper CTuC6 (Optical Society of America, 2009).

    Google Scholar 

  42. Hamidi, E. & Weiner, A. M. Phase-only matched filtering of ultrawideband arbitrary microwave waveforms via optical pulse shaping. J. Lightwave Technol. 26, 2355–2363 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Li Fan for experimental assistance and for helpful discussions. The work was supported by the National Sciences Foundation under contract no. ECCS-0701448, the Defense Threat Reduction Agency under contract no. HDTRA1-07-C-0042 and by the Naval Postgraduate School under grant no. N00244-09-1-0068 under the National Security Science and Engineering Faculty Fellowship program. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Contributions

M.H.K. led the fabrication of the spectral shaper chip with assistance from Y.X. and L.Z. H.S. set up the characterization apparatus and conducted the waveform generation and measurement with assistance from S.X. and D.E.L. M.Q. and A.M.W. conceived the idea and supervised the study. M.Q., A.M.W. and H.S. wrote the manuscript.

Corresponding authors

Correspondence to Andrew M. Weiner or Minghao Qi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M., Shen, H., Xuan, Y. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nature Photon 4, 117–122 (2010). https://doi.org/10.1038/nphoton.2009.266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing