Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active magneto-plasmonics in hybrid metal–ferromagnet structures

Abstract

Surface-plasmon-mediated confinement of optical fields holds great promise for on-chip miniaturization of all-optical circuits1,2,3,4. Following successful demonstrations of passive nanoplasmonic devices5,6,7, active plasmonic systems have been designed to control plasmon propagation. This goal has been achieved either by coupling plasmons to optically active materials8,9,10,11,12,13 or by making use of transient optical nonlinearities in metals via strong excitation with ultrashort laser pulses14,15,16,17. Here, we present a new concept in which the active optical component is a metal–ferromagnet–metal structure. It is based on active magneto-plasmonic microinterferometry, where the surface plasmon wave vector in a gold–ferromagnet–gold trilayer system is controlled using a weak external magnetic field. Application of this new technique allows measurement of the electromagnetic field distribution inside a metal at optical frequencies and with nanometre depth resolution. Significant modulation depth combined with possible all-optical magnetization reversal induced by femtosecond light pulses18 opens a route to ultrafast magneto-plasmonic switching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active magneto-plasmonic interferometry.
Figure 2: Magneto-plasmonic interferograms in tilted slit–groove microinterferometers.
Figure 3: Magnetization switching of the magneto-plasmonic signal.
Figure 4: Probing the electromagnetic field inside the gold layer.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  3. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2008).

    Article  ADS  Google Scholar 

  4. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–63 (2008).

    Article  Google Scholar 

  5. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  6. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  7. Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    Article  ADS  Google Scholar 

  8. Krasavin, A. V. & Zheludev, N. I. Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    Article  ADS  Google Scholar 

  9. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  10. Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U. & Artemyev, M. V. Exciton–plasmon–photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

    Article  ADS  Google Scholar 

  11. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  12. Dicken, M. J. et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).

    Article  ADS  Google Scholar 

  13. Koller, D. M. et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

    Article  ADS  Google Scholar 

  14. Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

    Article  ADS  Google Scholar 

  15. Piredda, G., Smith, D. D., Wendling, B. & Boyd, R. W. Nonlinear optical properties of a gold–silica composite with high gold fill fraction and the sign change of its nonlinear absorption. J. Opt. Soc. Am. B 25, 945–950 (2008).

    Article  ADS  Google Scholar 

  16. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2008).

    Article  ADS  Google Scholar 

  17. Temnov, V. V. et al. Femtosecond surface plasmon interferometry. Opt. Express 17, 8423–8432 (2009).

    Article  ADS  Google Scholar 

  18. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  19. Wallis, R. F. Surface magnetoplasmons on semiconductors. In Boardman, A. D. (ed.) Electromagnetic Surface Modes, Ch. 15, 575–631 (John Wiley & Sons, 1982).

    Google Scholar 

  20. Gonzalez-Diaz, J. B. et al. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys. Rev. B 76, 153402 (2007).

    Article  ADS  Google Scholar 

  21. Hermann, C. et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B 64, 235422 (2001).

    Article  ADS  Google Scholar 

  22. Gonzalez-Diaz, J. B. et al. Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Adv. Mater. 19, 2643–2647 (2007).

    Article  Google Scholar 

  23. Gonzalez-Diaz, J. B. et al. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 4, 202–205 (2008).

    Article  Google Scholar 

  24. Sepulveda, B., Lechuga, L. M. & Armelles, G. Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J. Lightwave Technol. 24, 945–955 (2006).

    Article  ADS  Google Scholar 

  25. Sepulveda, B., Calle, A., Lechuga, L. & Armelles, G. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 31, 1085–1087 (2006).

    Article  ADS  Google Scholar 

  26. Gay, G. et al. The response of nanostructured surfaces in the near field. Nature Phys. 2, 262–267 (2006).

    Article  ADS  Google Scholar 

  27. Temnov, V. V., Woggon, U., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon interferometry: measuring group velocity of surface plasmons. Opt. Lett. 32, 1235–1237 (2007).

    Article  ADS  Google Scholar 

  28. Hillebrands, B. & Fassbender, J. Applied physics: ultrafast magnetic switching. Nature 418, 493–495 (2002).

    Article  ADS  Google Scholar 

  29. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2004).

    Article  ADS  Google Scholar 

  30. Belotelov, V. I., Doskolovich, L. L. & Zvezdin, A. K. Extraordinary magneto-optical effects and transmission through metal–dielectric plasmonic systems. Phys. Rev. Lett. 98, 077401 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Network of Excellence PhOREMOST, EU (NMP3-SL-2008-214107-Nanomagma), Spanish MICINN (‘FUNCOAT’ CONSOLIDER INGENIO 2010 CSD2008-00023 and ‘MAGPLAS’ MAT2008-06765-C02-01/NAN) CM (‘NANOMAGNET’ S-0505/MAT/0194, ‘MICROSERES’ S-0505/TIC/0191), The German Research Foundation (DFG TE770/1). We also thank J.L. Costa-Krämer for the Transverse Kerr loop measurement and K. Nelson for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

V.T., U.W., G.A. and A.C. wrote the proposal. V.T., U.W., G.A., A.C., A.G.M. and J.M.G.M. conceived and designed the experiments. G.A., A.C., A.G.M., J.M.G.M., T.T., A.L. and R.B. prepared and characterized the samples. A.C., D.G., A.G.M., T.T., A.L. and R.B. contributed materials and analysis tools. V.T. and G.A. performed the measurements and analysed the data. G.A., A.G.M., D.G. and V.T. carried out theoretical calculations. All authors wrote the manuscript.

Corresponding author

Correspondence to Vasily V. Temnov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temnov, V., Armelles, G., Woggon, U. et al. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nature Photon 4, 107–111 (2010). https://doi.org/10.1038/nphoton.2009.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing