Letter | Published:

Active magneto-plasmonics in hybrid metal–ferromagnet structures

Nature Photonics volume 4, pages 107111 (2010) | Download Citation

Abstract

Surface-plasmon-mediated confinement of optical fields holds great promise for on-chip miniaturization of all-optical circuits1,2,3,4. Following successful demonstrations of passive nanoplasmonic devices5,6,7, active plasmonic systems have been designed to control plasmon propagation. This goal has been achieved either by coupling plasmons to optically active materials8,9,10,11,12,13 or by making use of transient optical nonlinearities in metals via strong excitation with ultrashort laser pulses14,15,16,17. Here, we present a new concept in which the active optical component is a metal–ferromagnet–metal structure. It is based on active magneto-plasmonic microinterferometry, where the surface plasmon wave vector in a gold–ferromagnet–gold trilayer system is controlled using a weak external magnetic field. Application of this new technique allows measurement of the electromagnetic field distribution inside a metal at optical frequencies and with nanometre depth resolution. Significant modulation depth combined with possible all-optical magnetization reversal induced by femtosecond light pulses18 opens a route to ultrafast magneto-plasmonic switching.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

  2. 2.

    & Light in tiny holes. Nature 445, 39–46 (2007).

  3. 3.

    Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2008).

  4. 4.

    The promise of plasmonics. Sci. Am. 296, 56–63 (2008).

  5. 5.

    , & Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

  6. 6.

    , , , & Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

  7. 7.

    et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

  8. 8.

    & Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

  9. 9.

    , & All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

  10. 10.

    , , , & Exciton–plasmon–photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

  11. 11.

    et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

  12. 12.

    et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).

  13. 13.

    et al. Organic plasmon-emitting diode. Nature Photon. 2, 684–687 (2008).

  14. 14.

    & Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

  15. 15.

    , , & Nonlinear optical properties of a gold–silica composite with high gold fill fraction and the sign change of its nonlinear absorption. J. Opt. Soc. Am. B 25, 945–950 (2008).

  16. 16.

    , , & Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2008).

  17. 17.

    et al. Femtosecond surface plasmon interferometry. Opt. Express 17, 8423–8432 (2009).

  18. 18.

    et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

  19. 19.

    Surface magnetoplasmons on semiconductors. In Boardman, A. D. (ed.) Electromagnetic Surface Modes, Ch. 15, 575–631 (John Wiley & Sons, 1982).

  20. 20.

    et al. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys. Rev. B 76, 153402 (2007).

  21. 21.

    et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B 64, 235422 (2001).

  22. 22.

    et al. Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Adv. Mater. 19, 2643–2647 (2007).

  23. 23.

    et al. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 4, 202–205 (2008).

  24. 24.

    , & Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J. Lightwave Technol. 24, 945–955 (2006).

  25. 25.

    , , & Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 31, 1085–1087 (2006).

  26. 26.

    et al. The response of nanostructured surfaces in the near field. Nature Phys. 2, 262–267 (2006).

  27. 27.

    , , , & Surface plasmon interferometry: measuring group velocity of surface plasmons. Opt. Lett. 32, 1235–1237 (2007).

  28. 28.

    & Applied physics: ultrafast magnetic switching. Nature 418, 493–495 (2002).

  29. 29.

    et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2004).

  30. 30.

    , & Extraordinary magneto-optical effects and transmission through metal–dielectric plasmonic systems. Phys. Rev. Lett. 98, 077401 (2007).

Download references

Acknowledgements

This work was supported by the European Network of Excellence PhOREMOST, EU (NMP3-SL-2008-214107-Nanomagma), Spanish MICINN (‘FUNCOAT’ CONSOLIDER INGENIO 2010 CSD2008-00023 and ‘MAGPLAS’ MAT2008-06765-C02-01/NAN) CM (‘NANOMAGNET’ S-0505/MAT/0194, ‘MICROSERES’ S-0505/TIC/0191), The German Research Foundation (DFG TE770/1). We also thank J.L. Costa-Krämer for the Transverse Kerr loop measurement and K. Nelson for stimulating discussions.

Author information

Affiliations

  1. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Vasily V. Temnov
  2. Instituto de Microelectrónica de Madrid-IMM (CNM-CSIC), 28760 Tres Cantos, Madrid, Spain

    • Gaspar Armelles
    • , Alfonso Cebollada
    • , Antonio Garcia-Martin
    •  & Jose-Miguel Garcia-Martin
  3. Institut für Optik und Atomare Physik, TU Berlin, Strasse des 17. Juni 135, 10632 Berlin, Germany

    • Ulrike Woggon
  4. Yanka Kupala Grodno State University, 230023 Grodno, Belarus

    • Dmitry Guzatov
  5. Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany

    • Tim Thomay
    • , Alfred Leitenstorfer
    •  & Rudolf Bratschitsch

Authors

  1. Search for Vasily V. Temnov in:

  2. Search for Gaspar Armelles in:

  3. Search for Ulrike Woggon in:

  4. Search for Dmitry Guzatov in:

  5. Search for Alfonso Cebollada in:

  6. Search for Antonio Garcia-Martin in:

  7. Search for Jose-Miguel Garcia-Martin in:

  8. Search for Tim Thomay in:

  9. Search for Alfred Leitenstorfer in:

  10. Search for Rudolf Bratschitsch in:

Contributions

V.T., U.W., G.A. and A.C. wrote the proposal. V.T., U.W., G.A., A.C., A.G.M. and J.M.G.M. conceived and designed the experiments. G.A., A.C., A.G.M., J.M.G.M., T.T., A.L. and R.B. prepared and characterized the samples. A.C., D.G., A.G.M., T.T., A.L. and R.B. contributed materials and analysis tools. V.T. and G.A. performed the measurements and analysed the data. G.A., A.G.M., D.G. and V.T. carried out theoretical calculations. All authors wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Vasily V. Temnov.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.265

Further reading