Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Airy–Bessel wave packets as versatile linear light bullets


The generation of spatiotemporal optical wave packets that are impervious to both dispersion and diffraction has been a fascinating challenge1. Despite intense research activity, such localized waves, referred to as light bullets, have remained elusive. In nonlinear propagation, three-dimensional light bullets tend to disintegrate as a result of inherent instabilities2,3. Three-dimensional wave packets that propagate linearly have been reported4,5,6,7,8,9, but their utility is severely limited by the need to tailor the wave packet precisely to material properties. To overcome these limitations, we explore a new approach based on the one-dimensional Airy wave packet10. Here, we report the first observation of a class of versatile three-dimensional linear light bullets, which combine Bessel beams in the transverse plane with temporal Airy pulses. Their evolution does not depend critically on the material in which they propagate, and the consequent versatility will facilitate their study and applications ranging from bioimaging11 to plasma physics12.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental schematic.
Figure 2: Non-dispersive propagation, free acceleration and self-healing of an Airy pulse.
Figure 3: Propagation of an Airy–Bessel bullet.
Figure 4: Two-photon-excited fluorescence in a dispersive Rhodamine-B dye solution.


  1. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, 2007).

    Google Scholar 

  2. Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Spatiotemporal solitons. J. Opt. B 7, R53–R72 (2005).

    ADS  Article  Google Scholar 

  3. Silberberg, Y. Collapse of optical pulses. Opt. Lett. 15, 1282–1284 (1990).

    ADS  Article  Google Scholar 

  4. Hernández-Figueroa, H. E., Zamboni-Rached, M. & Recami, E. Localized Waves (John Wiley & Sons, 2008).

    Book  Google Scholar 

  5. Sõnajalg, H., Rätsep, M. & Saari, P. Demonstration of the Bessel-X pulse propagation with strong lateral and longitudinal localization in a dispersive medium. Opt. Lett. 22, 310–312 (1997).

    ADS  Article  Google Scholar 

  6. Lu, J. Y. & Greenleaf, J. F. Nondiffracting X-waves. Exact solutions to free space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelec. Freq. Cont. 39, 19–31 (1992).

    Article  Google Scholar 

  7. Di Trapani, P. et al. Spontaneously generated X-shaped light bullets. Phys. Rev. Lett. 91, 093904 (2003).

    ADS  Article  Google Scholar 

  8. Porras, M. A. & Di Trapani, P. Localized and stationary light wave modes in dispersive media. Phys. Rev. E 69, 066606 (2004).

    ADS  Article  Google Scholar 

  9. Longhi, S. Localized subluminal envelope pulses in dispersive media. Opt. Lett. 29, 147–149 (2004).

    ADS  Article  Google Scholar 

  10. Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    ADS  Article  Google Scholar 

  11. Brown, C. T. A. et al. Enhanced operation of femtosecond lasers and applications in cell transfection. J. Biophoton. 1, 183–199 (2008).

    Article  Google Scholar 

  12. Kruer, W. The Physics of Laser Plasma Interactions (Westview Press, 2003).

    Google Scholar 

  13. Rasmussen, J. J. & Rypdal, K. Blow-up in nonlinear Schrödinger equations. Phys. Scr. 33, 481–497 (1986).

    ADS  Article  Google Scholar 

  14. Liu, X., Qian, L. J. & Wise, F. W. Generation of optical spatiotemporal solitons. Phys. Rev. Lett. 82, 4631–4634 (1999).

    ADS  Article  Google Scholar 

  15. Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    ADS  Article  Google Scholar 

  16. Gori, F., Guattari, G. & Padovani, C. Bessel-Gauss beams. Opt. Commun. 64, 491–495 (1987).

    ADS  Article  Google Scholar 

  17. Garcez-Chavez, V. et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    ADS  Article  Google Scholar 

  18. Fan, J., Parra, E. & Milchberg, H. M. Resonant self-trapping and absorption of intense Bessel beams. Phys. Rev. Lett. 84, 3085–3088 (2000).

    ADS  Article  Google Scholar 

  19. Amako, J., Sawaki, D. & Fujii, E. Microstructuring transparent materials by use of non-diffracting ultrashort pulse beams generated by diffractive optics. J. Opt. Soc. Am. B 20, 2562–2568 (2003).

    ADS  Article  Google Scholar 

  20. Erdelyi, M. et al. Generation of diffraction-free beams for applications in optical microlithography. J. Vac. Sci. Technol. B 15, 287–292 (1997).

    Article  Google Scholar 

  21. Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002).

    ADS  Article  Google Scholar 

  22. Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    ADS  Article  Google Scholar 

  23. Besieris, I. M. & Shaarawi, A. M. A note on accelerating finite energy Airy beam. Opt. Lett. 32, 2447–2449 (2007).

    ADS  Article  Google Scholar 

  24. Silviloglou, G. A. & Christodoulides, D. N. Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007).

    ADS  Article  Google Scholar 

  25. Gutiérrez-Vega, J. C., Iturbe-Castillo, M. C. & Chávez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 25, 1493–1495 (2000).

    ADS  Article  Google Scholar 

  26. Polynkin, P. et al. Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009).

    ADS  Article  Google Scholar 

  27. Broky, J., Siviloglou, G. A., Dogariu, A. & Christodoulides, D. N. Self-healing properties of optical Airy beams. Opt. Express 16, 12880–12891 (2008).

    ADS  Article  Google Scholar 

  28. Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon. 2, 675–678 (2008).

    ADS  Article  Google Scholar 

  29. Scott, G. & McArdle, N. Efficient generation of nearly diffraction-free beams using an axicon. Opt. Eng. 31, 2640–2643 (1992).

    ADS  Article  Google Scholar 

  30. Polesana, P. et al. High localization, focal depth and contrast by means of nonlinear Bessel beams. Opt. Express 13, 6160–6167 (2005).

    ADS  Article  Google Scholar 

Download references


The authors thank A. Bartnik and K. Kieu for their help. This work was supported by the National Science Foundation (PHY-0653482).

Author information

Authors and Affiliations



A.C. performed the experiments and analysed the data. W.H.R. performed a theoretical study with some numerical simulations. D.N.C. proposed the original concept and analytic models. F.W.W. supervised the project. The manuscript was prepared by A.C., D.N.C. and F.W.W.

Corresponding author

Correspondence to Andy Chong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chong, A., Renninger, W., Christodoulides, D. et al. Airy–Bessel wave packets as versatile linear light bullets. Nature Photon 4, 103–106 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing