Letter | Published:

A matterless double slit

Nature Photonics volume 4, pages 9294 (2010) | Download Citation

Abstract

Double slits provide incoming particles with a choice. Those that survive passage through the slits have chosen from two possible paths, which interfere to distribute them in a wave-like manner. Such wave–particle duality1 continues to be challenged2,3,4,5 and investigated in a broad range of disciplines with electrons6, neutrons7, helium atoms8, C60 fullerenes9, Bose–Einstein condensates10 and biological molecules11. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron–positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in vacuum, supporting elastic scattering between photons12,13. Our double-slit scenario presents, on the one hand, a realizable method with which to observe photon–photon scattering and, on the other hand, demonstrates the possibility of both controlling light with light and non-locally investigating features of the quantum vacuum structure.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Waves and quanta. Nature 112, 540 (1923).

  2. 2.

    , & Quantum optical tests of complementarity. Nature 351, 111–116 (1991).

  3. 3.

    & Uncertainty over complementarity? Nature 377, 584 (1995).

  4. 4.

    et al. Attosecond double-slit experiment. Phys. Rev. Lett. 95, 040401 (2005).

  5. 5.

    , & Quantum interference enforced by time–energy complementarity. Phys. Rev. Lett. 96, 100403 (2006).

  6. 6.

    Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161, 454–474 (1961).

  7. 7.

    et al. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988).

  8. 8.

    & Young's double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).

  9. 9.

    et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).

  10. 10.

    et al. Observation of interference between two bose condensates. Science 275, 637–641 (1997).

  11. 11.

    et al. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003).

  12. 12.

    , & Light diffraction by a strong standing electromagnetic wave. Phys. Rev. Lett. 97, 083603 (2006).

  13. 13.

    et al. Using high-power lasers for detection of elastic photon–photon scattering. Phys. Rev. Lett. 96, 083602 (2006).

  14. 14.

    & Photon acceleration in vacuum. Z. Phys. 98, 714–732 (1936).

  15. 15.

    European Light Infrastructure (ELI). ELI Scientific Case. <> (2007).

  16. 16.

    High Power Laser Energy Research (HiPER). HiPER Technical Background and Conceptual Design Report. <> (2007).

  17. 17.

    Experiments and calculations relative to physical optics. Phil. Trans. R. Soc. Lond. 94, 1–16 (1804).

  18. 18.

    et al. Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008).

  19. 19.

    et al. Quantum efficiency of a back-illuminated ccd imager: an optical approach. Proc. SPIE 3649, 80–90 (1999).

  20. 20.

    & Quantum Optics (Cambridge Univ. Press, 1997).

Download references

Acknowledgements

We would like to acknowledge helpful discussions with J. Evers, R. Moshammer and G. Sansone.

Author information

Affiliations

  1. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany.

    • Ben King
    • , Antonino Di Piazza
    •  & Christoph H. Keitel

Authors

  1. Search for Ben King in:

  2. Search for Antonino Di Piazza in:

  3. Search for Christoph H. Keitel in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Antonino Di Piazza.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.261

Further reading