Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells

Abstract

The coherent control of mesoscopic ensembles of atoms and Rydberg atom blockade are the basis for proposed quantum devices such as integrable gates and single-photon sources. To date, experimental progress has been limited to complex experimental set-ups that use ultracold atoms. Here, we show that coherence times of 100 ns are achievable with coherent Rydberg atom spectroscopy in micrometre-sized thermal vapour cells. We investigate states with principle quantum numbers between 30 and 50. Our results demonstrate that microcells with a size on the order of the blockade radius (2 µm), at temperatures of 100–300 °C, are robust and promising candidates for investigating low-dimensional strongly interacting Rydberg gases, constructing quantum gates and building single-photon sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: EIT scheme and transmission signals as a function of frequency.
Figure 3: Comparison of the shift and broadening as a function of wedge thickness for the 32S and 43S states.
Figure 4: The transmission curves of the 32S state as a function of frequency and thickness.
Figure 5: Transmission curves for the 41D state.

References

  1. 1

    Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Tong, D. et al. Local blockade of Rydberg excitations in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).

    ADS  Article  Google Scholar 

  3. 3

    Singer, K., Reetz-Lamour, M., Amthor, T., Marcassa, L. G. & Weidemüller, M. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004).

    ADS  Article  Google Scholar 

  4. 4

    Schwettmann, A., Crawford, J., Overstreet, K. R. & Shaffer, J. P. Cold Cs Rydberg–gas interactions. Phys. Rev. A 74, 020701(R) (2006).

    ADS  Article  Google Scholar 

  5. 5

    Nascimento, V. A., Caliri, L. L., Schwettmann, A., Shaffer, J. P. & Marcassa, L. G. Electric field effects in the excitation of cold Rydberg–atom pairs. Phys. Rev. Lett. 102, 213201 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Saffman, M. & Mølmer, K. Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009).

    ADS  Article  Google Scholar 

  7. 7

    Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS  Article  Google Scholar 

  8. 8

    Saffman, M. & Walker, T. G. Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Gaetan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Sharping, J. E. Rubidium on a chip. Nature Photon. 1, 315–316 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Yang, W. et al. Atomic spectroscopy on a chip. Nature Photon. 1, 331–335 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Löw, R. & Pfau, T. Magneto-optics: hot atoms rotate light rapidly. Nature Photon. 3, 197–199 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    ADS  Article  Google Scholar 

  15. 15

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  16. 16

    Schwettmann, A., McGuffy, C., Chauhan, S., Overstreet, K. R. & Shaffer, J. P. A tunable four pass narrow spectral bandwidth amplifier for use at 500 nm. Appl. Opt. 46, 1310–1315 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Siddons, P., Bell, N. C., Cai, Y., Adams, C. S. & Hughes, I. G. A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect. Nature Photon. 3, 225–229 (2009).

    ADS  Article  Google Scholar 

  18. 18

    Hinds, E. A., Lai, K. S. & Schnell, M. Atoms in micron-sized metallic and dielectric waveguides. Phil. Trans. R. Soc. Lond. A 355, 2353–2365 (1997).

    ADS  Article  Google Scholar 

  19. 19

    Barton, G. Van der Waals shifts in an atom near absorptive dielectric mirrors. Proc. R. Soc. Lond. A 453, 2461–2495 (1997).

    ADS  Article  Google Scholar 

  20. 20

    Wylie, J. M. & Sipe, J. E. Quantum electrodynamics near an interface. Phys. Rev. A 32, 2030–2043 (1985).

    ADS  Article  Google Scholar 

  21. 21

    Failache, H., Saltiel, S., Fichet, M., Bloch, D. & Ducloy, M. Resonant coupling in the Van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy. Eur. Phys. J. D 23, 237–255 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Thompson, D. C., Weinberger, W., Xu, G.-X. & Stoicheff, B. P. Frequency shifts and line broadenings in collisions between Rydberg atoms and ground-state alkali-metal atoms. Phys. Rev. A 35, 690–700 (1987).

    ADS  Article  Google Scholar 

  23. 23

    Hoogenraad, J. H. & Noordam, L. D. Rydberg atoms in far–infrared radiation fields. I. Dipole matrix elements of H, Li, and Rb. Phys. Rev. A 57, 4533–4545 (1998).

    ADS  Article  Google Scholar 

  24. 24

    Spitzer, W. G. & Kleinman, D. A. Infrared lattice bands of quartz. Phys. Rev. 121, 1324–1334 (1961).

    ADS  Article  Google Scholar 

  25. 25

    Gallagher, T. Rydberg Atoms (Cambridge Univ. Press, 1994).

  26. 26

    Zimmerman, M. L., Littman, M. G., Kash, M. M. & Kleppner, D. Stark structure of the Rydberg states of alkali-metal atoms. Phys. Rev. A 20, 2251–2275 (1979).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with H.P. Büchler, C.S. Adams and H. Giessen, as well as financial support from the Landesstiftung Baden-Württemberg. J.P. S. acknowledges support from the Alexander von Humboldt Foundation and the National Science Foundation (PHY-0855324). We acknowledge the technical assistance of R. August and J. Quack.

Author information

Affiliations

Authors

Contributions

H.K. and J.S. took and analysed the data. All authors conceived the experiment. T.B. fabricated the cells. H.K. and J.S. prepared the manuscript. T.P. and R.L. also contributed to the manuscript. T.P. supervised and coordinated all the work.

Corresponding author

Correspondence to T. Pfau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kübler, H., Shaffer, J., Baluktsian, T. et al. Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nature Photon 4, 112–116 (2010). https://doi.org/10.1038/nphoton.2009.260

Download citation

Further reading