Synthesis of a single cycle of light with compact erbium-doped fibre technology


The advent of self-referenced optical frequency combs1,2 has sparked the development of novel areas in ultrafast sciences such as attosecond technology3,4 and the synthesis of arbitrary optical waveforms5,6. Few-cycle light pulses are key to these time-domain applications, driving a quest for reliable, stable and cost-efficient mode-locked laser sources with ultrahigh spectral bandwidth. Here, we present a set-up based entirely on compact erbium-doped fibre technology, which produces single cycles of light. The pulse duration of 4.3 fs is close to the shortest possible value for a data bit of information transmitted in the near-infrared regime. These results demonstrate that fundamental limits for optical telecommunications are accessible with existing fibre technology and standard free-space components.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Set-up of a single-cycle fibre laser system.
Figure 2: Spectra and time traces of the pulses generated by the two separate branches.
Figure 3: Fringe-resolved second-order autocorrelations for different time delays Δt between dispersive wave and soliton.
Figure 4: Characterization of the synthesized single-cycle pulse.
Figure 5: Sensitivity of the fringe-resolved autocorrelation to Δt and Δϕ.


  1. 1

    Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Article  Google Scholar 

  2. 2

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  3. 3

    Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    ADS  Article  Google Scholar 

  4. 4

    Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-X-ray harmonic continua. New J. Phys. 9, 242–253 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Shelton, R. K. et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers. Science 293, 1286–1289 (2001).

    ADS  Article  Google Scholar 

  6. 6

    Rausch, S., Binhammer, T., Harth, A., Kärtner, F. X. & Morgner, U. Few-cycle femtosecond field synthesizer. Opt. Express 16, 17410–17419 (2008).

    ADS  Article  Google Scholar 

  7. 7

    Fork, R. L., Brito Cruz, C. H., Becker, P. C. & Shank, C. V. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

    ADS  Article  Google Scholar 

  8. 8

    Rausch, S. et al. Controlled waveforms on the single-cycle scale from a femtosecond oscillator. Opt. Express 16, 9739–9745 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Sartania, S. et al. Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate. Opt. Lett. 22, 1562–1564 (1997).

    ADS  Article  Google Scholar 

  10. 10

    Yamane, K. et al. Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation. Opt. Lett. 28, 2258–2260 (2003).

    ADS  Article  Google Scholar 

  11. 11

    Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28, 1987–1989 (2003).

    ADS  Article  Google Scholar 

  12. 12

    Gale, G. M., Cavallari, M., Driscoll, T. J. & Hache, F. Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Opt. Lett. 20, 1562–1564 (1995).

    ADS  Article  Google Scholar 

  13. 13

    Wilhelm, T., Piel, J. & Riedle, E. Sub-20-fs pulses tunable across the visible from a blue-pumped singlepass noncollinear parametric converter. Opt. Lett. 22, 1494–1496 (1997).

    ADS  Article  Google Scholar 

  14. 14

    Baltuška, A., Fuji, T. & Kobayashi, T. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett. 27, 306–308 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Brida, D. et al. Sub-two-cycle light pulses at 1.6 µm from an optical parametric amplifier. Opt. Lett. 33, 741–743 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Sell, A., Krauss, G., Scheu, R., Huber, R. & Leitenstorfer, A. 8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation. Opt. Express 17, 1070–1077 (2009).

    ADS  Article  Google Scholar 

  17. 17

    Schibli, T. R. et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation. Opt. Lett. 28, 947–949 (2003).

    ADS  Article  Google Scholar 

  18. 18

    Adler, F., Sell, A., Sotier, F., Huber, R. & Leitenstorfer, A. Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser. Opt. Lett. 32, 3504–3506 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    ADS  Article  Google Scholar 

  20. 20

    Tamura, K., Ippen, E. P., Haus, H. A. & Nelson, L. E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993).

    ADS  Article  Google Scholar 

  21. 21

    Tauser, F., Leitenstorfer, A. & Zinth, W. Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution. Opt. Express 11, 594–600 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Tauser, F., Adler, F. & Leitenstorfer, A. Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source. Opt. Lett. 29, 516–518 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Amat-Roldán, I., Cormack, I. G., Loza-Alvarez, P., Gualda, E. J. & Artigas, D. Ultrashort pulse characterization with SHG collinear-FROG. Opt. Express 12, 1169–1178 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Stibenz, G. & Steinmeyer, G. Interferometric frequency-resolved optical gating. Opt. Express 13, 2617–2626 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Merlein, J. et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).

    Article  Google Scholar 

  26. 26

    Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV cm−1. Opt. Lett. 33, 2767–2769 (2008).

    ADS  Article  Google Scholar 

  27. 27

    Chalus, O., Bates, P. K., Smolarski, M. & Biegert, J. Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz. Opt. Express 17, 3587–3594 (2009).

    ADS  Article  Google Scholar 

Download references

Author information




A.L., G.K., S.L., A.S. and R.H. conceived the experiment, and together with T.H. and S.E. carried it out; G.K., S.L., A.L. and A.S. designed and carried out the data analysis; G.K., S.L., R.H. and A.L. co-wrote the paper.

Corresponding author

Correspondence to Alfred Leitenstorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krauss, G., Lohss, S., Hanke, T. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photon 4, 33–36 (2010).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing