Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An optical ultrafast random bit generator


The generation of random bit sequences based on non-deterministic physical mechanisms is of paramount importance for cryptography and secure communications. High data rates also require extremely fast generation rates and robustness to external perturbations. Physical generators based on stochastic noise sources have been limited in bandwidth to 100 Mbit s−1 generation rates. We present a physical random bit generator, based on a chaotic semiconductor laser, having time-delayed self-feedback, which operates reliably at rates up to 300 Gbit s−1. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the RBG and examples of digitized data.
Figure 2: Correlations of the signal amplitude.
Figure 3: Histogram of the digitized laser intensity.
Figure 4: Statistical bias in the random sequence.
Figure 5: Dependence of bit generation rate on the order of derivative.


  1. Metropolis, N. & Ulam, S. The Monte Carlo method. J. Am. Statist. Assoc. 44, 335–341 (1949).

    Article  Google Scholar 

  2. Asmussen, S. & Glynn, P. W. Stochastic Simulation: Algorithms and Analysis (Springer-Verlag, 2007).

    MATH  Google Scholar 

  3. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  4. Stinson, D. R. Cryptography: Theory and Practice (CRC Press, 1995).

    MATH  Google Scholar 

  5. Gallager, R. G. Principles of Digital Communication (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  6. Vincent, C. H. Precautions for accuracy in generation of truly random binary numbers. J. Phys. E 4, 825–828 (1971).

    Google Scholar 

  7. Maddocks, R. S., Vincent, C. H., Walker, E. W. & Matthews, S. Compact and accurate generator for truly random binary digits. J. Phys. E 5, 542–544 (1972).

    ADS  Article  Google Scholar 

  8. Walker, J. HotBits: Genuine Random Numbers, Generated by Radioactive Decay <>.

  9. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L. & Zbinden, H. Optical quantum random number generator. J. Modern Optics 47, 595–598 (2000).

    ADS  Google Scholar 

  10. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H. & Zeilinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000).

    ADS  Article  Google Scholar 

  11. Rand Corporation. A Million Random Digits with 100,000 Normal Deviates (Free Press, 1955).

  12. Fairfield, R. C., Mortenson, R. L. & Coulthart, K. B. in Advances in Cryptology—Crypto '84 203–230 (Springer-Verlag, 1984).

    Google Scholar 

  13. Hales, J., Zhukov, A., Roy, R. & Dykman, M. I. Dynamics of activated escape and its observation in a semiconductor laser. Phys. Rev. Lett. 85, 78–81 (2000).

    ADS  Article  Google Scholar 

  14. Rosenbluh, M. et al. Spiking optical patterns and synchronization. Phys. Rev. E 76, 046207 (2007).

    ADS  Article  Google Scholar 

  15. Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon. 2, 728–732 (2008).

    ADS  Article  Google Scholar 

  16. Murphy, T. E. & Roy, R. Chaotic lasers: the world's fastest dice. Nature Photon. 2, 714–715 (2008).

    ADS  Article  Google Scholar 

  17. NIST Statistical Tests Suite <>.

  18. Marsaglia, G. Diehard: A Battery of Tests of Randomness <>.

  19. Reidler, I., Aviad, Y., Rosenbluh, M. & Kanter, I. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett. 103, 024102 (2009).

    ADS  Article  Google Scholar 

  20. Schuster, H. & Just, W. Deterministic Chaos (Wiley-VCH, 2005).

    Book  Google Scholar 

  21. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  22. Knuth, D. E. The Art of Computer Programming 3rd edn (Addison-Wesley, 1997).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations



I.K., Y.A., I.R. and M.R. contributed to the planning, experimentation, data analysis and writing of the manuscript. E.C. contributed to the data analysis.

Corresponding author

Correspondence to Ido Kanter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanter, I., Aviad, Y., Reidler, I. et al. An optical ultrafast random bit generator. Nature Photon 4, 58–61 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing