Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical quantum memory

Abstract

Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electromagnetically induced transparency.
Figure 2: Storage of light by electromagnetically induced transparency.
Figure 3: The DLCZ protocol.
Figure 4: CRIB-based quantum memory in solid-state devices that feature optical centres with permanent electric dipole moments.
Figure 5: AFC-based quantum memory.
Figure 6: Quantum memory based on the off-resonant Faraday interaction between light and atoms.

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  2. Mermin, N. D. Quantum Computer Science Ch. 3 (Cambridge Univ. Press, 2007).

    Book  MATH  Google Scholar 

  3. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  5. Lund, A. P. & Ralph, T. C. Nondeterministic gates for photonic single-rail quantum logic. Phys. Rev. A 66, 032307 (2002).

    Article  ADS  Google Scholar 

  6. Berry, D. W., Lvovsky, A. I. & Sanders, B. C. Interconvertibility of single-rail optical qubits. Opt. Lett. 31, 107–109 (2006).

    Article  ADS  Google Scholar 

  7. Marcikic, I. et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002).

    Article  ADS  Google Scholar 

  8. Gottesman, D. in Encyclopedia of Mathematical Physics Vol. 4, (eds Francoise, J.-P., Naber, G. L. & Tsou, S. T.) 196–201 (Elsevier, 2006).

    Book  Google Scholar 

  9. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  Google Scholar 

  10. Lobino, M. et al. Complete characterization of quantum–optical processes. Science 322, 563–566 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lobino, M., Kupchak, C., Figueroa, E. & Lvovsky A. I. Memory for light as a quantum process. Phys. Rev. Lett. 102, 203601 (2009).

    Article  ADS  Google Scholar 

  12. Hammerer, K., Polzik, E. S. & Cirac, J. I. Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Phys. Rev. A 72, 052313 (2005).

    Article  ADS  Google Scholar 

  13. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    Article  ADS  Google Scholar 

  14. Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502 (2008).

    Article  ADS  Google Scholar 

  15. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  16. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  17. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  18. Sangouard, M., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Preprint at http://arxiv.org/abs/0906.2699 (2009).

  19. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article  ADS  Google Scholar 

  20. Hong, C. K. & Mandel, L. Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58–60 (1986).

    Article  ADS  Google Scholar 

  21. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    Article  ADS  Google Scholar 

  22. Landry, O., van Houwelingen, J. A. W., Beveratos, A., Zbinden, H. & Gisin, N. Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007).

    Article  ADS  Google Scholar 

  23. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Single Photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002).

    Article  ADS  Google Scholar 

  24. Pittman, T. B. & Franson, J. D. Cyclical quantum memory for photonic qubits. Phys. Rev. A 66, 062302 (2002).

    Article  ADS  Google Scholar 

  25. Leung, P. M. & Ralph, T. C. Quantum memory scheme based on optical fibres and cavities. Phys. Rev. A 74, 022311 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  26. Maître, X. et al. Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997).

    Article  ADS  Google Scholar 

  27. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  28. Tanabe, T., Notomi, M., Taniyama, H. & Kuramochi, E. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009).

    Article  ADS  Google Scholar 

  29. Javan, A., O. Kocharovskaya, Lee, H. & Scully, M. O. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium. Phys. Rev. A 66, 013805 (2002).

    Article  ADS  Google Scholar 

  30. Kasapi, A., Jain, M., Yin, G. Y. & Harris, S. E. Electromagnetically induced transparency: Propagation dynamics. Phys. Rev. Lett. 74, 2447–2450 (1995).

    Article  ADS  Google Scholar 

  31. Fleischhauer, M. & Lukin, M. D. Quantum memory for photons: Dark-state polaritons. Phys. Rev. A 65, 022314 (2002).

    Article  ADS  Google Scholar 

  32. Budker, D., Kimball, D. F., Rochester, S. M. & Yashchuk, V. V. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83, 1767–1770 (1999).

    Article  ADS  Google Scholar 

  33. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  34. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  35. Lukin, M. D. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

    Article  ADS  Google Scholar 

  36. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  37. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  38. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  39. Gorshkov, A. V., André, A., Fleischhauer, M., Sørensen, A. S. & Lukin, M. D. Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

    Article  ADS  Google Scholar 

  40. Phillips, N. B., Gorshkov, A. V. & Novikova, I. Optimal light storage in atomic vapor. Phys. Rev. A 78, 023801 (2008).

    Article  ADS  Google Scholar 

  41. Novikova, I. et al. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007).

    Article  ADS  Google Scholar 

  42. Novikova, I., Phillips, N. B. & Gorshkov, A. V. Optimal light storage with full pulse-shape control. Phys. Rev. A 78, 021802(R) (2008).

    Article  ADS  Google Scholar 

  43. Camacho, R. M., Vudyasetu, P. K. & Howell, J. C. Four-wave-mixing stopped light in hot atomic rubidium vapour. Nature Photon. 3, 103–106 (2009).

    Article  ADS  Google Scholar 

  44. Ichimura, K., Yamamoto, K. & Gemma, N. Evidence for electromagnetically induced transparency in a solid medium. Phys. Rev. A 58, 4116–4120 (1998).

    Article  ADS  Google Scholar 

  45. Turukhin, A. V. et al. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2001).

    Article  ADS  Google Scholar 

  46. Longdell, J. J., Fraval, E., Sellars, M. J. & Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett. 95, 063601 (2005).

    Article  ADS  Google Scholar 

  47. Goldner, P. et al. Long coherence lifetime and electromagnetically induced transparency in a highly-spin-concentrated solid. Phys. Rev. A 79, 033809 (2009).

    Article  ADS  Google Scholar 

  48. Chanelière, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  49. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    Article  ADS  Google Scholar 

  50. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  51. Akamatsu, D., Akiba, K. & Kozuma, M. Electromagnetically induced transparency with squeezed vacuum. Phys. Rev. Lett. 92, 203602 (2004).

    Article  ADS  Google Scholar 

  52. Honda, K. et al. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008).

    Article  ADS  Google Scholar 

  53. Arikawa, M. et al. Quantum memory of a squeezed vacuum for arbitrary frequency sidebands. Preprint at http://arxiv.org/abs/0905.2816 (2009).

  54. Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).

    Article  ADS  Google Scholar 

  55. Figueroa, E., Vewinger, F., Appel, J. & Lvovsky, A. I. Decoherence of electromagnetically induced transparency in atomic vapor. Opt. Lett. 31, 2625–2627 (2006).

    Article  ADS  Google Scholar 

  56. Hsu, M. T. L. et al. Quantum study of information delay in electromagnetically induced transparency. Phys. Rev. Lett. 97, 183601 (2006).

    Article  ADS  Google Scholar 

  57. Peng, A. et al. Squeezing and entanglement delay using slow light. Phys. Rev. A 71, 033809 (2005).

    Article  ADS  Google Scholar 

  58. Hétet, G. et al. Erratum: Squeezing and entanglement delay using slow light. Phys. Rev. A 74, 059902(E) (2006).

    Article  ADS  Google Scholar 

  59. Hétet, G., Peng, A., Johnsson, M. T., Hope, J. J. & Lam, P. K. Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories. Phys. Rev. A 77, 012323 (2008).

    Article  ADS  Google Scholar 

  60. Figueroa, E., Lobino, M., Korystov, D., Appel, J. & Lvovsky, A. I. Propagation of squeezed vacuum under electromagnetically induced transparency. New J. Phys. 11, 013044 (2009).

    Article  ADS  MATH  Google Scholar 

  61. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  62. Chen, Y.-A. et al. Memory-build-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

    Article  ADS  Google Scholar 

  63. Moiseev, S. A. & Tittel, W. Optical quantum memory with generalized time-reversible atom–light interactions. Preprint at http://arxiv.org/abs/0812.1730 (2009).

  64. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  ADS  MATH  Google Scholar 

  65. Kurnit, N. A., Abella, I. D. & Hartmann, S. R. Observation of a photon echo. Phys. Rev. Lett. 13, 567–568 (1964).

    Article  ADS  Google Scholar 

  66. Elyutin, S. O., Zakharov, S. M. & Manykin, E. A. Theory of formation of photon echo pulses. Sov. Phys. JETP 49, 421–431 (1979).

    ADS  Google Scholar 

  67. Mossberg, T. W. Time-domain frequency-selective optical data storage. Opt. Lett. 7, 77–79 (1982).

    Article  ADS  Google Scholar 

  68. Mossberg, T., Flusberg, A., Kachru, R. & Hartmann, S. R. Total scattering cross section for Na on He measured by stimulated photon echoes. Phys. Rev. Lett. 42, 1665–1669 (1979).

    Article  ADS  Google Scholar 

  69. Carlson, N. W., Rothberg, L. J., Yodh, A. G., Babbitt, W. R. & Mossberg, T. W. Storage and time reversal of light pulses using photon echoes. Opt. Lett. 8, 483–485 (1983).

    Article  ADS  Google Scholar 

  70. Ruggiero, J., Le Gouët, J.-L, Simon, C. & Chanelière, T. Why the two-pulse photon echo is not a good quantum memory protocol. Phys. Rev. A 79, 053851 (2009).

    Article  ADS  Google Scholar 

  71. Tittel, W. et al. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. doi:10.1002/lpor.200810056 (2009).

  72. Hétet, G., Longdell, J. J., Sellars, M. J., Lam, P. K. & Buchler, B. C. Multimodal properties and dynamics of gradient echo quantum memory. Phys. Rev. Lett. 101, 203601 (2008).

    Article  ADS  Google Scholar 

  73. Moiseev, S. A. & Kröll, S. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. Phys. Rev. Lett. 87, 173601 (2001).

    Article  ADS  Google Scholar 

  74. Moiseev, S. A., Tarasov, V. F. & Ham, B. S. Quantum memory photon echo-like techniques in solids. J. Opt. B 5, S497–S502 (2003).

    Article  ADS  Google Scholar 

  75. Nilsson, M. & Kröll, S. Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun. 247, 393–403 (2005).

    Article  ADS  Google Scholar 

  76. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96, 043602 (2006).

    Article  ADS  Google Scholar 

  77. Kraus, B. et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening. Phys. Rev. A 73, 020302(R) (2006).

    Article  ADS  Google Scholar 

  78. Moiseev, S. A. & Noskov, M. I. The possibilities of the quantum memory realization for short pulses of light in the photon echo technique. Laser Phys. Lett. 1, 303–310 (2004).

    Article  ADS  Google Scholar 

  79. Sangouard, N., Simon, C., Afzelius, M. & Gisin, N. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous.broadening. Phys. Rev. A 75, 032327 (2007).

    Article  ADS  Google Scholar 

  80. Longdell, J. J., Hétet, G., Lam, P. K. & Sellars, M. J. Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms. Phys. Rev. A 78, 032337 (2008).

    Article  ADS  Google Scholar 

  81. Hétet, G., Longdell, J. J., Alexander, A. L., Lam, P. K. & Sellars, M. J. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett. 100, 023601 (2008).

    Article  ADS  Google Scholar 

  82. Moiseev, S. A. & Arslanov, N. M. Efficiency and fidelity of photon-echo quantum memory in an atomic system with longitudinal inhomogeneous broadening. Phys. Rev. A 78, 023803 (2008).

    Article  ADS  Google Scholar 

  83. Hétet, G. et al. Photon echoes generated by reversing magnetic field gradients in a rubidium vapor. Opt. Lett. 33, 2323–2325 (2008).

    Article  ADS  Google Scholar 

  84. Le Gouët, J.-L. & Berman, P. R. Raman scheme for adjustable-bandwidth quantum memory. Phys. Rev. A 80, 012320 (2009).

    Article  ADS  Google Scholar 

  85. Hosseini, M. et al. Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009).

    Article  ADS  Google Scholar 

  86. Alexander, A. L., Longdell, J. J., Sellars, M. J. & Manson, N. B. Coherent information storage with photon echoes produced by switching electric fields. J. Lumin. 127, 94–97 (2007).

    Article  Google Scholar 

  87. Lauritzen, B. et al. Solid state quantum memory for photons at telecommunication wavelengths. Preprint at http://arxiv.org/abs/0908.2348 (2009).

  88. Appel, J., Marzlin, K.-P. & Lvovsky, A. I. Raman adiabatic transfer of optical states in multilevel atoms. Phys. Rev. A 73, 013804 (2006).

    Article  ADS  Google Scholar 

  89. Vewinger, F., Appel, J., Figueroa, E. & Lvovsky, A. I. Adiabatic frequency conversion of quantum optical information in atomic vapor. Opt. Lett. 32, 2771–2773 (2007).

    Article  ADS  Google Scholar 

  90. Campbell, G., Ordog, A. & Lvovsky, A. I. Multimode electromagnetically induced transparency on a single atomic line. New J. Phys. 11, 103021 (2009).

    Article  ADS  Google Scholar 

  91. Staudt, M. U. et al. Investigations of optical coherence properties in an erbium-doped silicate fiber for quantum state storage. Opt. Commun. 266, 720–726 (2006).

    Article  ADS  Google Scholar 

  92. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008).

    Article  ADS  Google Scholar 

  93. Hesselink, W. H. & Wiersma, D. A. Picosecond photon echoes stimulated from an accumulated grating. Phys. Rev. Lett. 43, 1991–1994 (1979).

    Article  ADS  Google Scholar 

  94. Rebane, A., Kaarli, R., Saari, P., Anijalg, A. & Timpmann, K. Photochemical time-domain holography of weak picosecond pulses. Opt. Commun. 47, 173–176 (1983).

    Article  ADS  Google Scholar 

  95. Mitsunaga, M., Yano, R. & Uesugi, N. Spectrally programmed stimulated photon echo. Opt. Lett. 16, 264–266 (1991).

    Article  ADS  Google Scholar 

  96. Afzelius, M. et al. Demonstration of atomic frequency comb memory for light with spin-wave storage. Preprint at http://arxiv.org/abs/0908.2309 (2009).

  97. Chanelière, T., Ruggiero, J., Bonarota, M., Afzelius, M. & Le Gouët, J.-L. Efficient light storage in a crystal using an atomic frequency comb. Preprint at http://arxiv.org/abs/0902.2048 (2009).

  98. Kuzmich, A. & Polzik, E. S. in Quantum Information with Continuous Variables (eds Braunstein, S. L. & Pati, A. K.) 231–265 (Kluwer, 2003).

    Book  Google Scholar 

  99. Muschik, C. A., Hammerer, K., Polzik, E. S. & Cirac, J. I. Efficient quantum memory and entanglement between light and an atomic ensemble using magnetic fields. Phys. Rev. A 73, 062329 (2006).

    Article  ADS  Google Scholar 

  100. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Preprint at http://arxiv.org/abs/0807.3358 (2009).

  101. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurášek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  102. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    Article  ADS  Google Scholar 

  103. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  Google Scholar 

  104. Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. 42, 481–486 (1998).

    Article  ADS  Google Scholar 

  105. Macfarlane, R. M. & Shelby, R. M. in Spectroscopy of Solids Containing Rare Earth Ions (eds Kaplyanskii, A. A. & Macfarlane, R. M.) (North-Holland, 1987).

    Google Scholar 

  106. Macfarlane, R. M. High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective. J. Lumin. 100, 1–20 (2002).

    Article  Google Scholar 

  107. Sun, Y., Thiel, C. W., Cone, R. L., Equall, R. W. & Hutcheson, R. L. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article  Google Scholar 

  108. Liu, G. & Jacquier, B. Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005).

    Google Scholar 

  109. Macfarlane, R. M. Optical Stark spectroscopy of solids. J. Lumin. 125, 156–174 (2007).

    Article  Google Scholar 

  110. Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–99 (2008).

    Article  ADS  Google Scholar 

  111. Zhao, R. et al. Long-lived quantum memory. Nature Phys. 5, 100–104 (2008).

    Article  ADS  Google Scholar 

  112. Schnorrberger, U. et al. Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009).

    Article  ADS  Google Scholar 

  113. Fraval, E., Sellars, M. J. & Longdell, J. J. Method of extending hyperfine coherence times in Pr3+:Y2SiO5 . Phys. Rev. Lett. 92, 077601 (2004).

    Article  ADS  Google Scholar 

  114. Fraval, E., Sellars, M. J. & Longdell, J. J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by iCORE, QuantumWorks, NSERC, CFI and GDC. A.I.L. is a CIFAR Scholar and B.C.S. is a CIFAR Associate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Lvovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lvovsky, A., Sanders, B. & Tittel, W. Optical quantum memory. Nature Photon 3, 706–714 (2009). https://doi.org/10.1038/nphoton.2009.231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing