Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-photon detectors for optical quantum information applications

Abstract

The past decade has seen a dramatic increase in interest in new single-photon detector technologies. A major cause of this trend has undoubtedly been the push towards optical quantum information applications such as quantum key distribution. These new applications place extreme demands on detector performance that go beyond the capabilities of established single-photon detectors. There has been considerable effort to improve conventional photon-counting detectors and to transform new device concepts into workable technologies for optical quantum information applications. This Review aims to highlight the significant recent progress made in improving single-photon detector technologies, and the impact that these developments will have on quantum optics and quantum information science.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Measurement of timing jitter.
Figure 2: Photon number resolution.
Figure 3: Established photon-counting technologies based on reverse-biased avalanche photodiodes.
Figure 4: Emerging single-photon detectors: a selection of promising technologies.

References

  1. Einstein, A. On a heuristic point of view about the creation and conversion of light. Ann. Phys. (Leipz.) 17, 132–148 (1905).

    Article  ADS  Google Scholar 

  2. Loudon, R. Quantum Theory of Light 3rd edn, Ch. 1 (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  3. Becker, W. Advanced Time-Correlated Single Photon Counting Techniques Ch. 2 (Springer, 2005).

    Book  Google Scholar 

  4. Migdall, A. Introduction to journal of modern optics special issue on single-photon: detectors, applications, and measurement methods. J. Mod. Opt. 51, 1265–1266 (2004).

    Article  ADS  MATH  Google Scholar 

  5. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information Ch. 1 (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  6. Zoller, P. et al. Quantum information processing and communication. Eur. Phys. J. D 36, 203–228 (2005).

    Article  ADS  Google Scholar 

  7. Bennett, C. H. & Brassard, G. in Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, Bangalore 175–179 (1984).

    Google Scholar 

  8. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  MATH  Google Scholar 

  9. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  10. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–175 (2007).

    ADS  Article  Google Scholar 

  11. O'Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  12. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  13. Bachor, H.-A. & Ralph, T. C. A Guide to Experiments in Quantum Optics 2nd edn, Ch. 7 (Wiley-VCH, 2004).

    Book  Google Scholar 

  14. Rarity, J. G., Ridley, K. D. & Tapster, P. R. Absolute measurement of detector quantum efficiency using parametric downconversion. Appl. Opt. 26, 4616–4619 (1987).

    Article  ADS  Google Scholar 

  15. Ware, M. & Migdall A. Single-photon detector characterization using correlated photons: the march from feasibility to metrology. J. Mod. Opt. 51, 1549–1557 (2004).

    Article  ADS  Google Scholar 

  16. Stevens, M. J. et al. Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector. Appl. Phys. Lett. 89, 031109 (2006).

    Article  ADS  Google Scholar 

  17. Silberhorn, C. Detecting quantum light. Contemp. Phys. 48, 143–156 (2007).

    Article  ADS  Google Scholar 

  18. Kumar, P. et al. Photonic technologies for quantum information processing. Quantum Inf. Process. 3, 215–231 (2004).

    Article  MATH  Google Scholar 

  19. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  20. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

    Article  ADS  Google Scholar 

  21. Jiang, L. A., Dauler, E. A. & Chang, J. T. Photon-number-resolving detector with 10 bits of resolution. Phys. Rev. A 75, 062325 (2007).

    Article  ADS  Google Scholar 

  22. Divochiy, A. et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nature Photon. 2, 302–306 (2008).

    Article  Google Scholar 

  23. Achilles, D., Silberhorn, C., Sliwa, C., Banaszek, K. & Walmsley, I. A. Fiber-assisted detection with photon-number resolution. Opt. Lett. 28, 2387–2389 (2003).

    Article  ADS  Google Scholar 

  24. Donati, S. Photodetectors: Devices, Circuits and Applications Ch. 3 (Prentice Hall, 2000).

    Google Scholar 

  25. Cheung, J., Migdall, A. & Rastello, M.-L. Single-photon sources, detectors, applications and measurement methods. J. Mod. Opt. 56, 139–140 (2009).

    Article  ADS  MATH  Google Scholar 

  26. Morton, G. A. Photomultipliers for scintillation counting. RCA Rev. 10, 525–553 (1949).

    Google Scholar 

  27. Poultney, S. K. Single-photon detection and timing: experiments and techniques. Adv. Electron. El. Phys. 31, 39–117 (1972).

    Article  Google Scholar 

  28. http://jp.hamamatsu.com/.

  29. http://www.burle.com/index.html.

  30. Kume, H., Koyama, K., Nakatsugawa, K., Suzuki, S. & Fatlowitz, D. Ultrafast microchannel plate photomultipliers. Appl. Opt. 27, 1170–1178 (1988).

    Article  ADS  Google Scholar 

  31. http://jp.hamamatsu.com/resources/products/etd/pdf/m-h7422e.pdf.

  32. http://jp.hamamatsu.com/resources/products/etd/pdf/NIR-PMT_APPLI_TPMO1040E02.pdf.

  33. Fukasawa, A., Haba, J., Kageyama, A., Nakazawa, H. & Suyama, M. High speed HPD for photon counting. IEEE Trans. Nucl. Sci. 55, 758–762 (2008).

    Article  ADS  Google Scholar 

  34. Cova, S., Longoni, A. & Andreoni, A. Towards picoseconds resolution with single-photon avalanche diodes. Rev. Sci. Inst. 52, 408–412 (1981).

    Article  ADS  Google Scholar 

  35. Haitz, R. H. Mechanisms contributing to the noise pulse rate of avalanche diodes. J. Appl. Phys. 36, 3123–3131 (1965).

    Article  ADS  Google Scholar 

  36. Brown, R. G. W., Jones, R., Rarity, J. G. & Ridley, K. D. Characterization of silicon avalanche photodiodes for photon correlation measurements 2: Active quenching. Appl. Opt. 26, 2383–2389 (1987).

    Article  ADS  Google Scholar 

  37. Daudet, H. et al. Photon counting techniques with silicon avalanche photodiodes. Appl. Opt. 32, 3894–3900 (1993).

    Article  ADS  Google Scholar 

  38. http://optoelectronics.perkinelmer.com/content/RelatedLinks/SpecificationSheets/SPC_PhotoDetectors.pdf.

  39. Blazej, J. Photon number resolving in Geiger mode avalanche photodiode photon counters. J. Mod. Opt. 51, 1491–1498 (2004).

    Article  ADS  Google Scholar 

  40. Kurtsiefer, C., Zarda, P., Mayer, S. & Weinfurter, H. The breakdown flash of silicon avalanche photodiodes — a back door for eavesdropper attacks? J. Mod. Opt. 48, 2039–2047 (2001).

    Article  ADS  Google Scholar 

  41. http://www.microphotondevices.com/products_pdm.asp.

  42. Cova, S., Lacaita, A., Ghioni, M., Ripamonti, G. & Louis, T. A. 20-ps timing resolution with single-photon avalanche diodes. Rev. Sci. Inst. 60, 1104–1110 (1989).

    Article  ADS  Google Scholar 

  43. Cova, S., Ghioni, M., Lotito, A., Rech, I. & Zappa, F. Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 51, 1267–1288 (2004).

    Article  ADS  Google Scholar 

  44. Zappa, F., Ghioni, M., Cova, S., Samori, C. & Giudice, A. C. An integrated active-quenching circuit for single-photon avalanche diodes. IEEE Trans. Instr. Meas. 49, 1167–1175 (2000).

    Article  Google Scholar 

  45. Rech, I. et al. Optical crosstalk in single photon avalanche diode arrays: a new complete model. Opt. Express 16, 8381–8394 (2008).

    Article  ADS  Google Scholar 

  46. Eraerds, P., Legré, M., Rochas, A., Zbinden, H. & Gisin, N. SiPM for fast photon-counting and multiphoton detection. Opt. Express 15, 14539–14549 (2007).

    Article  ADS  Google Scholar 

  47. Lacaita, A., Zappa, F., Cova, S. & Lovati, P. Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors Appl. Opt. 35, 2986–2996 (1996).

    Article  ADS  Google Scholar 

  48. Ribordy, G., Gautier, J.-D., Zbinden, H. & Gisin, N. Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters. Appl. Opt. 37, 2272–2277 (1998).

    Article  ADS  Google Scholar 

  49. Rarity, J. G., Wall, T. E., Ridley, K. D., Owens, P. C. M. & Tapster, P. R. Single-photon counting for the 1300–1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes. Appl. Opt. 39, 6746–6753 (2000).

    Article  ADS  Google Scholar 

  50. Hiskett, P. A. et al. Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 μm. Appl. Opt. 39, 6818–6829 (2000).

    Article  ADS  Google Scholar 

  51. Bethune, D. S. & Risk, W. P. An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light. IEEE J. Quant. Elect. 36, 340–347 (2000).

    Article  ADS  Google Scholar 

  52. Pellegrini S. et al. Design and performance of an InGaAs-InP single-photon avalanche diode detector. IEEE J. Quant. Elect. 42, 397–403 (2006).

    Article  ADS  Google Scholar 

  53. http://www.princetonlightwave.com/content/PGA-400%20V1.0.pdf.

  54. http://www.idquantique.com/products/files/id201-specs.pdf.

  55. Gobby, C., Yuan, Z. L. & Shields, A. J. Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004).

    Article  ADS  Google Scholar 

  56. Namekata, N., Sasamori, S. & Inoue, S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP photodiode operated with a sine wave gating. Opt. Express 14, 10043–10049 (2006).

    Article  ADS  Google Scholar 

  57. Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Opt. Express 16, 18790–18797 (2008).

    Article  ADS  Google Scholar 

  58. Thew, R. T., Stucki, D., Gautier, J.-D., Zbinden, H. & Rochas, A. Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths. Appl. Phys. Lett. 91, 201114 (2007).

    Article  ADS  Google Scholar 

  59. Kardynał, B. E., Yuan, Z. L. & Shields, A. J. An avalanche-photodiode-based photon-number-resolving detector. Nature Photon. 2, 425–428 (2008).

    Article  Google Scholar 

  60. Warburton, R. E., Itzler, M. & Buller, G. S. Free-running room temperature operation of an InGaAs/InP single-photon avalanche diode. Appl. Phys. Lett. 94, 071116 (2009).

    Article  ADS  Google Scholar 

  61. Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

    Article  ADS  Google Scholar 

  62. Albota, M. A. & Wong, F. N. C. Efficient single-photon counting at1.55 μm by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004).

    Article  ADS  Google Scholar 

  63. Vandevender, A. P. & Kwiat, P. G. High efficiency single-photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004).

    Article  ADS  MATH  Google Scholar 

  64. Langrock, C. et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005).

    Article  ADS  Google Scholar 

  65. Takesue, H. et al. Differential phase shift quantum key distribution experiment over 105 km fibre. New J. Phys. 7, 232–243 (2005).

    Article  ADS  Google Scholar 

  66. Thew, R. T. et al. Low jitter up-conversion detectors for telecom wavelength GHz QKD. New J. Phys. 8, 32–43 (2006).

    Article  ADS  Google Scholar 

  67. Zhang, Q. et al. Megabits secure key rate quantum key distribution. New J. Phys. 11, 045010 (2009).

    Article  ADS  Google Scholar 

  68. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    Article  ADS  Google Scholar 

  69. Takeuchi, S., Kim, J., Yamamoto, Y. & Hogue H. H. Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063–1065 (1999).

    Article  ADS  Google Scholar 

  70. Kim, J., Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999).

    Article  ADS  Google Scholar 

  71. Waks, E. et al. High-efficiency photon-number detection for quantum information processing. IEEE J. Sel. Top. Quant. 9, 1502–1511 (2003).

    Article  Google Scholar 

  72. Waks, E., Diamanti, E., Sanders, B. C., Bartlett, S. D. & Yamamoto, Y. Direct observation of nonclassical photon statistics in parametric down-conversion. Phys. Rev. Lett. 92, 113602 (2004).

    Article  ADS  Google Scholar 

  73. Cabrera, B. et al. Detection of single infrared, optical and ultraviolet photons using superconducting transition edge sensors. Appl. Phys. Lett. 73, 735–737 (1998).

    Article  ADS  Google Scholar 

  74. Miller, A. J., Nam, S. W., Martinis, J. M. & Sergienko, A. V. Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791–793 (2003).

    Article  ADS  Google Scholar 

  75. Rosenberg, D., Lita, A. E., Miller, A. J. & Nam, S. W. Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005).

    Article  ADS  Google Scholar 

  76. Rosenberg, D. et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007).

    Article  ADS  Google Scholar 

  77. Fukuda, D. et al. Photon number resolving detection with high speed and high quantum efficiency. Metrologia 46, S288–S292 (2009).

    Article  Google Scholar 

  78. Di Giuseppe, G. et al. Direct observation of photon pairs at a single output port of a beam-splitter interferometer. Phys. Rev. A 68, 063817 (2003).

    Article  ADS  Google Scholar 

  79. Rosenberg, D. et al. Quantum key distribution at telecom wavelengths with noise-free detectors. Appl. Phys. Lett. 88, 021108 (2006).

    Article  ADS  Google Scholar 

  80. Gol'tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Article  ADS  Google Scholar 

  81. Il'in, K. S. et al. Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Appl. Phys. Lett. 76, 2752–2754 (2000).

    Article  ADS  Google Scholar 

  82. Verevkin, A. et al. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 80, 4687–4689 (2002).

    Article  ADS  Google Scholar 

  83. Miki, S. et al. Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates. Appl. Phys. Lett. 92, 061116 (2008).

    Article  ADS  Google Scholar 

  84. Kerman, A. J. et al. Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007).

    Article  ADS  Google Scholar 

  85. Kerman, A. J. et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006).

    Article  ADS  Google Scholar 

  86. Hadfield, R. H. et al. Single photon source characterization with a superconducting single photon detector. Opt. Express 13, 10846–10853 (2005).

    Article  ADS  Google Scholar 

  87. Rosfjord, K. M. et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14, 527–534 (2006).

    Article  ADS  Google Scholar 

  88. Dorenbos, S. N. et al. Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008).

    Article  ADS  Google Scholar 

  89. Dauler, E. A. et al. Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors. J. Mod. Opt. 56, 364–373 (2009).

    Article  ADS  Google Scholar 

  90. Takesue, H. et al. Quantum key distribution over 40-dB channel loss using superconducting single-photon detectors. Nature Photon. 1, 343–348 (2007).

    Article  ADS  Google Scholar 

  91. Shields, A. J. et al. Detection of single photons using a field-effect transistor gated by a layer of quantum dots. Appl. Phys. Lett. 76, 3673–3675 (2000).

    Article  ADS  Google Scholar 

  92. Kardynał, B. E. et al. Low-noise photon counting with a radio-frequency quantum-dot field-effect transistor. Appl. Phys. Lett. 84, 419–421 (2004).

    Article  ADS  Google Scholar 

  93. Rowe, M. A. et al. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006).

    Article  ADS  Google Scholar 

  94. Kardynal, B. E. et al. Photon number resolving detector based on a quantum dot field effect transistor. Appl. Phys. Lett. 90, 181114 (2007).

    Article  ADS  Google Scholar 

  95. Gansen, E. J. et al. Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nature Photon. 1, 585–588 (2007).

    Article  ADS  Google Scholar 

  96. Blakesley, J. C. et al. Efficient single photon detection by quantum dot resonant tunneling diodes. Phys. Rev. Lett. 94, 067401 (2005).

    Article  ADS  Google Scholar 

  97. Li, H. W. et al. Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection. Appl. Phys. Lett. 91, 073516 (2007).

    Article  ADS  Google Scholar 

  98. Kosaka, H. et al. Photoconduction quantization in a single-photon detector. Phys. Rev. B 65, 201307 (2002).

    Article  ADS  Google Scholar 

  99. Yablonovitch, E. et al. Optoelectronic quantum telecommunications based on spins in semiconductors. Proc. IEEE 91, 761–780 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hadfield, R. Single-photon detectors for optical quantum information applications. Nature Photon 3, 696–705 (2009). https://doi.org/10.1038/nphoton.2009.230

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.230

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing