Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit

Abstract

The unique optical properties of metals are at the core of many areas of research and applications, including plasmonics1,2,3,4, metamaterials5,6, superlensing and subdiffraction focusing7,8,9,10, optical antennas11,12,13,14 and surface enhanced Raman scattering15. One important length scale inherent in metamaterials and plasmonics research activities in the microwave5,16, terahertz17,18,19, infrared20,21, visible22 and ultraviolet ranges7 is the skin depth of metal, which remains at the submicrometre level throughout the broad spectral range. One prominent question is whether terahertz electromagnetic waves can be controlled on the nanoscale to achieve new functionalities in the sub-skin-depth regime. Here, we show that a λ/30,000 slit on metal film acts as a nanogap-capacitor charged by light-induced currents, enhancing the electric field by orders of magnitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Terahertz nanogap concept and time-domain spectroscopy.
Figure 2: Terahertz time-domain spectroscopy through nearly free-standing nanogaps.
Figure 3: The FDTD analysis of fields around nanogaps.

Similar content being viewed by others

References

  1. Ebbesen, T. W., Lezec, H. J., Chaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  2. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Article  ADS  Google Scholar 

  3. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  4. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 13, 189–193 (2006).

    Article  ADS  Google Scholar 

  5. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  6. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    Article  ADS  Google Scholar 

  7. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  8. Melville, D. O. S. & Blaikie, R. J. Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005).

    Article  ADS  Google Scholar 

  9. Grbic, A., Jiang, L. & Merlin, R. Near-field plates: subdiffraction focusing with patterned surfaces. Science 320, 511–513 (2008).

    Article  ADS  Google Scholar 

  10. Maier, S. A., Andrews, S. R., Martı´n-Moreno, L. & Garcı´a-Vidal, F. J. Terahertz surface plasmon–polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

    Article  ADS  Google Scholar 

  11. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antenna. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  12. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  13. Alu, A. & Engheta, N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nature Photon. 2, 307–310 (2008).

    Article  Google Scholar 

  14. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  15. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  16. Hibbins, A. P., Evans, B. R. & Sambles, J. R. Experimental verification of designer surface plasmons. Science 308, 670–672 (2005).

    Article  ADS  Google Scholar 

  17. Chen, H.-T. et al. Active terahertz metamaterials devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  18. Matsui, T., Agrawal, A., Nahata, A. & Vardeny, Z. V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446, 517–521 (2007).

    Article  ADS  Google Scholar 

  19. Kawano, Y. & Ishibashi, K. An on-chip near-field terahertz probe and detector. Nature Photon. 2, 618–621 (2008).

    Article  Google Scholar 

  20. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  ADS  Google Scholar 

  21. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  ADS  Google Scholar 

  22. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2006).

    Article  ADS  Google Scholar 

  23. Lee, J. W. et al. Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Phys. Rev. Lett. 99, 137401 (2007).

    Article  ADS  Google Scholar 

  24. García de Abajo, F. J., Gómez-Medina, R. & Sáenz, J. J. Full transmission through perfect-conductor subwavelength hole arrays. Phys. Rev. E 72, 016608 (2005).

    Article  ADS  Google Scholar 

  25. Garcia-Vidal, F. J., Moreno, E., Porto, J. A. & Martin-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005).

    Article  ADS  Google Scholar 

  26. Takakura, Y. Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86, 5601–5603 (2001).

    Article  ADS  Google Scholar 

  27. Yang, F. & Sambles, J. R. Resonant transmission of microwaves through a narrow metallic slit. Phys. Rev. Lett. 89, 063901 (2002).

    Article  ADS  Google Scholar 

  28. Liu, H. & Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008).

    Article  ADS  Google Scholar 

  29. Van Exter, M., Fattinger, C. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).

    Article  ADS  Google Scholar 

  30. Wu, Q., Litz, M. & Zhang, X.-C. Broadband detection capability of ZnTe electro-optic field detectors. Appl. Phys. Lett. 68, 2924–2926 (1996).

    Article  ADS  Google Scholar 

  31. Lee, J. W. et al. Shape resonance omni-directional terahertz filters with near-unity transmittance. Opt. Express 14, 1253–1259 (2006).

    Article  ADS  Google Scholar 

  32. Lee, J. W. et al. Terahertz transparency at Fabry–Perot resonances of periodic slit arrays in a metal plate: experiment and theory. Opt. Express 14, 12637–12643 (2006).

    Article  ADS  Google Scholar 

  33. Lee, J. W. et al. Invisible plasmonic meta-materials through impedance matching to vacuum. Opt. Express 13, 10681–10687 (2005).

    Article  ADS  Google Scholar 

  34. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn, ch. 11 (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  35. Ordal, M. A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared. Appl. Opt. 22, 1099–1119 (1983).

    Article  ADS  Google Scholar 

  36. Azad, A. K. & Zhang, W. Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness. Opt. Lett. 30, 2945–2947 (2005).

    Article  ADS  Google Scholar 

  37. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

    Article  ADS  Google Scholar 

  38. Miyazaki, H. T. & Kurokawa, Y. Metal–insulator–metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B 75, 035411 (2007).

    Article  ADS  Google Scholar 

  39. Taflove, A. & Hagness, S. C. Computational Electromagnetics: The Finite-Difference Time-Domain Method 852 (Artech House, 2000).

    MATH  Google Scholar 

  40. Danielson, J. R. et al. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Phys. Rev. Lett. 99, 237401 (2007).

    Article  ADS  Google Scholar 

  41. Jackson, J. D. Classical Electrodynamics, 3rd edn, ch. 10 (John Wiley & Sons, 2001).

Download references

Acknowledgements

We acknowledge helpful discussions with J. B. Pendry, D. Grischkowsky and K. J. Ahn. H. Kim is also thanked for discussions concerning diffractive optics correction used in data analysis and for Kirchhoff formalism. This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST), the Korea Research Foundation (KRF), KICOS (GRL, K20815000003) and the Seoul R&BD Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. H. Park or D. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, M., Park, H., Koo, S. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nature Photon 3, 152–156 (2009). https://doi.org/10.1038/nphoton.2009.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing