Article | Published:

III-nitride photonic-crystal light-emitting diodes with high extraction efficiency

Nature Photonics volume 3, pages 163169 (2009) | Download Citation

Subjects

Abstract

Light-emitting diodes are becoming an increasingly attractive alternative to conventional light sources due to their small size, high efficiency and long lifetime. Ongoing research is dedicated to improving their performance through the use of more efficient light-generating and light-extracting structures. Here, we demonstrate light-emitting diodes achieving high extraction efficiency by using photonic crystals. The structures are iii-nitride thin-film light-emitting diodes emitting at λ = 450 nm. The photonic-crystal layer provides superior optical mode control compared to conventional iii-nitride light-emitting diodes, efficiently coupling guided modes out of the light-emitting diode. Fabry–Perot and photonic-crystal induced modes are observed in the far-field radiation patterns and are matched to theoretical electromagnetic calculations. The optical mode control results in a high-performance light-emitting diode with an estimated unencapsulated light extraction of 73%, higher than any unencapsulated iii-nitride light-emitting diode measured to date.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Is the light emitting diode (LED) an ultimate lamp? Am. J. Phys. 68, 864–866 (2000).

  2. 2.

    et al. Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A cm−2. Appl. Phys. Lett. 91, 243506 (2007).

  3. 3.

    & Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

  4. 4.

    et al. High-power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett. 78, 3379–3381 (2001).

  5. 5.

    et al. High brightness LEDs for general lighting applications using the new ThinGaN™-technology. Phys. Stat. Sol (a) 201, 2736–2739 (2004).

  6. 6.

    et al. High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006).

  7. 7.

    et al. Status and future of high-power light-emitting diodes for solid-state lighting, J. Display Tech. 3, 160–175 (2007).

  8. 8.

    Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

  9. 9.

    , , & High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294–3297 (1997).

  10. 10.

    , , , & Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

  11. 11.

    Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

  12. 12.

    et al. Surface recombination measurements on iiiv candidate materials for nanostructure light-emitting diodes. J. Appl. Phys. 87, 3497–3504 (2000).

  13. 13.

    et al. GaN blue photonic crystal membrane nanocavities. Appl. Phys. Lett. 87, 243101 (2005).

  14. 14.

    et al. Omnidirectional and compact guided light extraction from Archimedean photonic lattices. Appl. Phys. Lett. 83, 1283 (2003).

  15. 15.

    , , & III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 83, 1231–1233 (2003).

  16. 16.

    et al. InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885–3887 (2004).

  17. 17.

    et al. High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal. Jpn J. Appl. Phys. 43, 5809–5813 (2004).

  18. 18.

    et al. Photonic crystal laser lift-off GaN light-emitting diodes. Appl. Phys. Lett. 88, 133514 (2006).

  19. 19.

    , & Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. J. Display Tech. 3, 133–148 (2007).

  20. 20.

    , & Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends. IEEE J. Quantum Electron. 34, 1612–1631 (1998).

  21. 21.

    , & Impact of planar microcavity effects on light extraction—Part II: selected exact simulations and role of photon recycling. IEEE J. Quantum Electron. 34, 1632–1643 (1998).

  22. 22.

    et al. Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Appl. Phys. Lett. 87, 101107 (2004).

  23. 23.

    et al. Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution. Appl. Phys. Lett. 88, 061124 (2006).

  24. 24.

    & Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60, 2610–2618 (1999).

  25. 25.

    , , & Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode. J. Opt. Soc. Am. A 19, 871–880 (2002).

  26. 26.

    , & Spontaneous emission in GaN/InGaN photonic crystal nanopillars. Opt. Express 15, 17991–18004 (2007).

  27. 27.

    et al. GaN light-emitting diodes with Archimedean lattice photonic crystals. Appl. Phys. Lett. 88, 073510 (2006).

  28. 28.

    et al. Device simultaneous determination of the source and cavity parameters of a microcavity light-emitting diode. J. Appl. Phys. 85, 2994–2996 (1999).

  29. 29.

    , , & Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates. Appl. Phys. Lett. 91, 051117 (2007).

  30. 30.

    , & Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B 73, 075107 (2006).

Download references

Acknowledgements

The authors would like to acknowledge support from several people, including M. Verschuuren of Philips Research, and T. Nguyen, K. Than and M. R. Krames of Philips Lumileds.

Author information

Affiliations

  1. Advanced Laboratories, Philips Lumileds Lighting Co., 370 W. Trimble Road, San Jose, California 95131, USA

    • Jonathan J. Wierer Jr
    •  & Aurelien David
  2. Philips Research, Philips, High Tech Campus 4, 5656 AA Eindhoven, The Netherlands

    • Mischa M. Megens

Authors

  1. Search for Jonathan J. Wierer in:

  2. Search for Aurelien David in:

  3. Search for Mischa M. Megens in:

Corresponding author

Correspondence to Aurelien David.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2009.21

Further reading