Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cavity-enhanced dual-comb spectroscopy

Abstract

The sensitivity of molecular fingerprinting is dramatically improved when the absorbing sample is placed in a high-finesse optical cavity, because the effective path length is increased. When the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace gases may be identified1 within a few milliseconds. However, efficient analysis of the light transmitted through the cavity remains challenging. Here, a novel approach—cavity-enhanced, frequency-comb, Fourier-transform spectroscopy—fully overcomes this difficulty and enables measurement of ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of microseconds without any need for detector arrays, potentially from the terahertz to ultraviolet regions. Within a period of just 18 µs, we recorded the spectra of the ammonia 1.0 µm overtone bands comprising 1,500 spectral elements and spanning 20 nm, with a resolution of 4.5 GHz and a noise equivalent absorption at 1 s averaging of 1 × 10−10 cm−1 Hz−1/2, thus opening a route to time-resolved spectroscopy of rapidly evolving single events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Time-domain interferogram.
Figure 3: Cavity-enhanced FC-FTS spectrum of C2H2.
Figure 4: Cavity-enhanced spectrum of the crowded region of the 3ν1 overtone band of NH3.

References

  1. 1

    Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    ADS  Article  Google Scholar 

  2. 2

    Berden, G. & Engeln, R. eds. Cavity Ring Down Spectroscopy: Techniques and Applications (Wiley, September 2009).

    Book  Google Scholar 

  3. 3

    Berden, G., Peeters, R. & Meijer, G. Cavity ring-down spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565–607 (2000).

    Article  Google Scholar 

  4. 4

    Thorpe, M. J., Hudson, D. D., Moll, K. D., Lasri, J. & Ye, J. Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm. Opt. Lett. 32, 307–309 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Thorpe, M. J., Balslev Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    ADS  Article  Google Scholar 

  7. 7

    Thorpe, M. J., Adler, F., Cossel, K. C., de Miranda, M. H. G. & Ye, J. Tomography of a supersonically cooled molecular jet using cavity-enhanced direct frequency comb spectroscopy. Chem. Phys. Lett. 468, 1–8 (2009).

    ADS  Article  Google Scholar 

  8. 8

    Gohle, Ch., Stein, B., Schliesser, A., Udem, T. & Hänsch, T. W. Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  10. 10

    Bernhardt, B. et al. Laser frequency combs for molecular fingerprinting. 2009 IEEE LEOS Annual Meeting Conference Proceedings, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2009).

  11. 11

    Jacquet, P. et al. Frequency comb Fourier transform spectroscopy with kHz optical resolution, in Fourier Transform Spectroscopy paper FMB2, ThB4, 2 pp. (Optical Society of America, 2009).

  12. 12

    Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Ganz, T., Brehm, M., von Ribbeck, H. G., van der Weide, D. W. & Keilmann, F. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys. 10, 123007 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Giaccari, P., Deschênes, J.-D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Keilmann, F., Gohle, Ch. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    ADS  Article  Google Scholar 

  18. 18

    Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

    ADS  Article  Google Scholar 

  19. 19

    Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  21. 21

    Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    ADS  Article  Google Scholar 

  22. 22

    Herman, M., Huet, T. R. & Vervloet, M. Spectroscopy and vibrational couplings in the 3ν3 region of acetylene. Mol. Phys. 66, 333–353 (1989).

    ADS  Article  Google Scholar 

  23. 23

    Irwin, P. G. J. et al. Band parameters and k coefficients for self-broadened ammonia in the range 4,000–11,000 cm−1. J. Quant. Spectrosc. Radiat. Transf. 62, 193–204 (1999).

    ADS  Article  Google Scholar 

  24. 24

    Kleiner, I. et al. NH3 and PH3 line parameters: the 2000 HITRAN update and new results. J. Quant. Spectrosc. Radiat. Transf. 82, 293–312 (2003).

    ADS  Article  Google Scholar 

  25. 25

    Adler, F. et al. Phase-stabilized 1.5 W frequency comb at 2.8–4.8 µm. Opt. Lett. 34, 1330–1332 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Research was conducted in the scope of the European Associated Laboratory ‘European Laboratory for Frequency Comb Spectroscopy’. Support was provided by the Max Planck Foundation and, for the PhD fellowship of P.J., by the Délégation Générale de l'Armement. The expert help of D. Höfling and T. Wilken in the operation of the ytterbium lasers is warmly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathalie Picqué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernhardt, B., Ozawa, A., Jacquet, P. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon 4, 55–57 (2010). https://doi.org/10.1038/nphoton.2009.217

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing